मराठी

Briefly Explain the Three Observed Features Which Can Be Explained by Einstein’S Photoelectric Equation. - Physics

Advertisements
Advertisements

प्रश्न

Briefly explain the three observed features which can be explained by Einstein’s photoelectric equation.

उत्तर

Three observed features which can be explained by this equation are:

(i) Solar cells: Also called photo-voltaic cells. It converts solar radiations to electrical emf.

(ii) Television telecast: The dark and bright light part of images are interpreted as high and low electrical charges as given by photoelectric emission principle. These are further processed and transmitted.

(iii) Burglar alarm: The moment the ultraviolet radiation is cut due to theif, it stops the supply of photons and thus works as ‘off’ mode and the ring bells automatically.

shaalaa.com
Einstein’s Photoelectric Equation: Energy Quantum of Radiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2012-2013 (March) All India Set 1

संबंधित प्रश्‍न

In an experiment on the photoelectric effect, the slope of the cut-off voltage versus the frequency of incident light is found to be 4.12 × 10−15 Vs. Calculate the value of Planck’s constant.


The work function for a certain metal is 4.2 eV. Will this metal give photoelectric emission for incident radiation of wavelength 330 nm?


Define the terms (i) ‘cut-off voltage’ and (ii) ‘threshold frequency’ in relation to the phenomenon of photoelectric effect.

Using Einstein’s photoelectric equation shows how the cut-off voltage and threshold frequency for a given photosensitive material can be determined with the help of a suitable plot/graph.


The frequency and intensity of a light source are doubled. Consider the following statements.

(A) The saturation photocurrent remains almost the same.
(B) The maximum kinetic energy of the photoelectrons is doubled.


The electric field at a point associated with a light wave is `E = (100  "Vm"^-1) sin [(3.0 xx 10^15 "s"^-1)t] sin [(6.0 xx 10^15 "s"^-1)t]`.If this light falls on a metal surface with a work function of 2.0 eV, what will be the maximum kinetic energy of the photoelectrons?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


In a photoelectric experiment, the collector plate is at 2.0 V with respect to the emitter plate made of copper (φ = 4.5 eV). The emitter is illuminated by a source of monochromatic light of wavelength 200 nm. Find the minimum and maximum kinetic energy of the photoelectrons reaching the collector.


According to Einstein's photoelectric equation, the plot of the kinetic energy of the emitted photoelectrons from a metal versus the frequency of the incident radiation gives a straight line, whose slope ______.


Each photon has the same speed but different ______.


The minimum energy required to remove an electron is called ______.


  1. In the explanation of photo electric effect, we assume one photon of frequency ν collides with an electron and transfers its energy. This leads to the equation for the maximum energy Emax of the emitted electron as Emax = hν – φ where φ0 is the work function of the metal. If an electron absorbs 2 photons (each of frequency ν) what will be the maximum energy for the emitted electron?
  2. Why is this fact (two photon absorption) not taken into consideration in our discussion of the stopping potential?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×