Advertisements
Advertisements
प्रश्न
By the principle of mathematical induction, prove the following:
13 + 23 + 33 + ….. + n3 = `("n"^2("n + 1")^2)/4` for all x ∈ N.
उत्तर
Let P(n) be the statement 13 + 23 + 33 + ….. + n3 = `("n"^2("n + 1")^2)/4` for all x ∈ N.
i.e., p(n) = 13 + 23 + …… + n3 = `("n"^2("n + 1")^2)/4` for all x ∈ N
Put n = 1
LHS = 13 = 1
RHS = `(1^2(1 + 1)^2)/4`
`= (1 xx 2^2)/4`
`= 4/4` = 1
∴ P(1) is true.
Assume that P(n) is true n = k
P(k): 13 + 23 + …… + k3 = `(k^2(k + 1)^2)/4`
To prove P(k + 1) is true.
i.e., to prove 13 + 23 + ……. + k3 + (k + 1)3 = `((k + 1)^2 ((k+1)+1)^2)/4 = ((k + 1)^2(k + 2)^2)/4`
Consider 13 + 23 + …… + k3 + (k + 1)3 = `(k^2(k + 1)^2)/4 + (k + 1)^3`
= (k + 1)2 `[k^2/4 + (k + 1)]`
= (k + 1)2 `[(k^2 + 4(k + 1))/4]`
`= ((k + 1)^2(k + 2)^2)/4`
⇒ P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction P(n) is true for all n ∈ N.
APPEARS IN
संबंधित प्रश्न
By the principle of mathematical induction, prove the following:
1.2 + 2.3 + 3.4 + … + n(n + 1) = `(n(n + 1)(n + 2))/3` for all n ∈ N.
By the principle of mathematical induction, prove the following:
1 + 4 + 7 + ……. + (3n – 2) = `("n"(3"n" - 1))/2` for all n ∈ N.
By the principle of mathematical induction, prove the following:
n(n + 1) (n + 2) is divisible by 6, for all n ∈ N.
By the principle of mathematical induction, prove the following:
2n > n, for all n ∈ N.
Using the Mathematical induction, show that for any natural number n,
`1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + ... + 1/("n"("n" + 1)*("n" + 2)) = ("n"("n" + 3))/(4("n" + 1)("n" + 2))`
Using the Mathematical induction, show that for any natural number n,
`1/(2.5) + 1/(5.8) + 1/(8.11) + ... + 1/((3"n" - 1)(3"n" + 2)) = "n"/(6"n" + 4)`
By the principle of Mathematical induction, prove that, for n ≥ 1
`1^2 + 2^2 + 3^2 + ... + "n"^2 > "n"^2/3`
Use induction to prove that n3 − 7n + 3, is divisible by 3, for all natural numbers n
Choose the correct alternative:
If `""^("a"^2 - "a")"C"_2 = ""^("a"^2 - "a")"C"_4` then the value of a is
Choose the correct alternative:
Everybody in a room shakes hands with everybody else. The total number of shake hands is 66. The number of persons in the room is ______