मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता ११

By the principle of mathematical induction, prove the following: 2n > n, for all n ∈ N. - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

By the principle of mathematical induction, prove the following:

2n > n, for all n ∈ N.

बेरीज

उत्तर

Let P(n) denote the statement 2n > n for all n ∈ N

i.e., P(n): 2n > n for n ≥ 1

Put n = 1, P(1): 21 > 1 which is true.

Assume that P(k) is true for n = k

i.e., 2k > k for k ≥ 1

To prove P(k + 1) is true.

i.e., to prove 2k+1 > k + 1 for k ≥ 1

Since 2k > k

Multiply both sides by 2

2 . 2k > 2k

2k+1 > k + k

i.e., 2k+1 > k + 1 (∵ k ≥ 1)

∴ P(k + 1) is true whenever P(k) is true.

∴ By principal of mathematical induction P(n) is true for all n ∈ N.

shaalaa.com
Mathematical Induction
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Algebra - Exercise 2.5 [पृष्ठ ४१]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×