Advertisements
Advertisements
प्रश्न
Prove that using the Mathematical induction
`sin(alpha) + sin (alpha + pi/6) + sin(alpha + (2pi)/6) + ... + sin(alpha + (("n" - 1)pi)/6) = (sin(alpha + (("n" - 1)pi)/12) xx sin(("n"pi)/12))/(sin (pi/12)`
उत्तर
P(n) is the statement
`sin(alpha) + sin (alpha + pi/6) + sin(alpha + (2pi)/6) + ... + sin(alpha + (("n" - 1)pi)/6)`
= `(sin(alpha + (("n" - 1)pi)/12) xx sin(("n"pi)/12))/(sin (pi/12)`
Put n = 1
⇒ P(1) = sin α = L.H.S
R.H.S = `(sin(alpha + ((1 - 1)pi)/12) sin pi/12)/(sin pi/12)`
= sin α
L.H.S = R.H.S
⇒ P(1) is true
Assume that the statement is true for n = k
(i.e.) P(k) = `sin(alpha) + sin(alpha + pi/6) + sin(alpha + (2pi)/6) + ... + sin(alpha + (("k" - 1)pi)/6)`
= `(sin(alpha + (("k" - 1)pi)/12) xx sin(("k"pi)/12))/(sin(pi/12)` is true
To prove P(k + 1) is true
Now P(k + 1) = P(k) + t(k + 1)
Now P(k + 1) = `"P"("k") + sin(alpha + ("k"pi)/6)`
= `(sin[alpha + ("k" - 1) pi/12] sin ("k"pi)/12)/(sin pi/12) + sin(alpha + ("k"pi)/6)`
= `(sin[alpha + ("k" - 1) pi/12]sin ("k"pi)/12 + sin(alpha + ("k"pi)/6)sin pi/12)/(sin pi/12)`
Nr. = `1/2[cos(alpha + ("k" - 1) pi/12 - ("k"pi)/12) - cos(alpha + (("k" - 1)pi)/12 + ("k"pi)/12) + cos(alpha + ("k"pi)/6 - pi/12) - cos(alpha + ("k"pi)/6 + pi/12)]`
= `1/2[cos(alpha + ("k"pi)/12 - pi/12 - ("k"pi)/12) - cos(alpha + ("k"pi)/12 - pi/12 + ("k"pi)/12) + cos(alpha + (2"k"pi)/12 - pi/12) - cos(alpha + (2"k"pi)/12 + pi/12)]`
= `1/2[cos(alpha - pi/12) - cos(alpha + (2"k"pi)/12 - pi/12) + cos(alpha + (2"k"pi)/12 - pi/12) - cos(alpha + (2"k"pi)/12 + pi/12)]`
= `1/2[cos(alpha - pi/12) - cos(alpha + (2"k"pi)/12 + pi/12)] + sin pi/12`
= `- sin 1/2 (2alpha + (2"k"pi)/12) sin 1/2(-(2"k"pi - 2pi)/12)`
= `sin(alpha + pi/12) sin("k" + 1) pi/12`
Dr. = `sin pi/12`
P(k + 1) = `(sin(alpha + pi/12) sin("k" + 1) pi/12)/(sin pi/12)`
⇒ P(k + 1) is true
Whenever P(k) is true.
So by the principle of mathematical induction
P(n) is true.
APPEARS IN
संबंधित प्रश्न
By the principle of mathematical induction, prove the following:
13 + 23 + 33 + ….. + n3 = `("n"^2("n + 1")^2)/4` for all x ∈ N.
By the principle of mathematical induction, prove the following:
1.2 + 2.3 + 3.4 + … + n(n + 1) = `(n(n + 1)(n + 2))/3` for all n ∈ N.
By the principle of mathematical induction, prove the following:
4 + 8 + 12 + ……. + 4n = 2n(n + 1), for all n ∈ N.
By the principle of mathematical induction, prove the following:
32n – 1 is divisible by 8, for all n ∈ N.
By the principle of mathematical induction, prove the following:
an – bn is divisible by a – b, for all n ∈ N.
By the principle of mathematical induction, prove the following:
n(n + 1) (n + 2) is divisible by 6, for all n ∈ N.
By the principle of mathematical induction, prove that, for n ≥ 1
13 + 23 + 33 + ... + n3 = `(("n"("n" + 1))/2)^2`
By the principle of mathematical induction, prove that, for n ≥ 1
12 + 32 + 52 + ... + (2n − 1)2 = `("n"(2"n" - 1)(2"n" + 1))/3`
Using the Mathematical induction, show that for any natural number n,
`1/(2.5) + 1/(5.8) + 1/(8.11) + ... + 1/((3"n" - 1)(3"n" + 2)) = "n"/(6"n" + 4)`
Prove by Mathematical Induction that
1! + (2 × 2!) + (3 × 3!) + ... + (n × n!) = (n + 1)! − 1
By the principle of Mathematical induction, prove that, for n ≥ 1
`1^2 + 2^2 + 3^2 + ... + "n"^2 > "n"^2/3`
Use induction to prove that n3 − 7n + 3, is divisible by 3, for all natural numbers n
Use induction to prove that 10n + 3 × 4n+2 + 5, is divisible by 9, for all natural numbers n
Choose the correct alternative:
In 3 fingers, the number of ways four rings can be worn is · · · · · · · · · ways
Choose the correct alternative:
If `""^("a"^2 - "a")"C"_2 = ""^("a"^2 - "a")"C"_4` then the value of a is
Choose the correct alternative:
Everybody in a room shakes hands with everybody else. The total number of shake hands is 66. The number of persons in the room is ______
Choose the correct alternative:
1 + 3 + 5 + 7 + · · · + 17 is equal to