Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
In 3 fingers, the number of ways four rings can be worn is · · · · · · · · · ways
पर्याय
43 – 1
34
68
64
उत्तर
64
APPEARS IN
संबंधित प्रश्न
By the principle of mathematical induction, prove the following:
13 + 23 + 33 + ….. + n3 = `("n"^2("n + 1")^2)/4` for all x ∈ N.
By the principle of mathematical induction, prove the following:
1.2 + 2.3 + 3.4 + … + n(n + 1) = `(n(n + 1)(n + 2))/3` for all n ∈ N.
By the principle of mathematical induction, prove the following:
1 + 4 + 7 + ……. + (3n – 2) = `("n"(3"n" - 1))/2` for all n ∈ N.
By the principle of mathematical induction, prove the following:
32n – 1 is divisible by 8, for all n ∈ N.
By the principle of mathematical induction, prove the following:
n(n + 1) (n + 2) is divisible by 6, for all n ∈ N.
By the principle of mathematical induction, prove the following:
2n > n, for all n ∈ N.
The term containing x3 in the expansion of (x – 2y)7 is:
By the principle of mathematical induction, prove that, for n ≥ 1
12 + 32 + 52 + ... + (2n − 1)2 = `("n"(2"n" - 1)(2"n" + 1))/3`
Prove that the sum of the first n non-zero even numbers is n2 + n
Using the Mathematical induction, show that for any natural number n ≥ 2,
`1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 +2 + 3 + 4) + .... + 1/(1 + 2 + 3 + ... + "n") = ("n" - 1)/("n" + 1)`
Using the Mathematical induction, show that for any natural number n,
`1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + ... + 1/("n"("n" + 1)*("n" + 2)) = ("n"("n" + 3))/(4("n" + 1)("n" + 2))`
Prove by Mathematical Induction that
1! + (2 × 2!) + (3 × 3!) + ... + (n × n!) = (n + 1)! − 1
Using the Mathematical induction, show that for any natural number n, x2n − y2n is divisible by x + y
Use induction to prove that n3 − 7n + 3, is divisible by 3, for all natural numbers n
Use induction to prove that 5n+1 + 4 × 6n when divided by 20 leaves a remainder 9, for all natural numbers n
Use induction to prove that 10n + 3 × 4n+2 + 5, is divisible by 9, for all natural numbers n
Choose the correct alternative:
If `""^("a"^2 - "a")"C"_2 = ""^("a"^2 - "a")"C"_4` then the value of a is
Choose the correct alternative:
1 + 3 + 5 + 7 + · · · + 17 is equal to