मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Using the Mathematical induction, show that for any natural number n, x2n − y2n is divisible by x + y - Mathematics

Advertisements
Advertisements

प्रश्न

Using the Mathematical induction, show that for any natural number n, x2n − y2n is divisible by x + y

बेरीज

उत्तर

Let P(n) = x2n – y2n is divisible by (x + y)

For n = 1

P(1) = x2 × 1 – y2 × 1 is divisible by (x + y)

⇒ (x + y) (x – y) is divisible by (x + y)

∴ P(1) is true

Let P(n) be true for n = k

∴ P(k) = x2k – y2k is divisible by (x + y)

⇒ x2k – y2k = λ(x + y)  ......(i)

For n = k + 1

⇒ P(k + 1) = `x^(2("k" + 1)) – y^(2("k" + 1))` is divisible by (x + y)

Now `x^(2("k" + 2)) – y^(2("k" + 2))` 

= `x^(2"k" + 2) – x^(2k)y^2 + x^(2k)y^2 – y^(2k) + 2`

= `x^(2k)*x^2 – x^(2k)y^2 + x^(2k)y^2 – y^(2k)y^2`

= `x^(2k) (x^2 – y^2) + y^2λ (x + y)`  ......[Using (i)]

⇒ `x^(2"k" + 2) – y^(2"k" + 2)` is divisible by (x + y)

∴ P(k + 1) is true.

Thus P(k) is true

⇒ P(k + 1) is true.

Hence by principle of mathematical induction,

P(n) is true for all n ∈ N

shaalaa.com
Mathematical Induction
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Combinatorics and Mathematical Induction - Exercise 4.4 [पृष्ठ १९६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 4 Combinatorics and Mathematical Induction
Exercise 4.4 | Q 10 | पृष्ठ १९६

संबंधित प्रश्‍न

By the principle of mathematical induction, prove the following:

13 + 23 + 33 + ….. + n3 = `("n"^2("n + 1")^2)/4` for all x ∈ N.


By the principle of mathematical induction, prove the following:

1.2 + 2.3 + 3.4 + … + n(n + 1) = `(n(n + 1)(n + 2))/3` for all n ∈ N.


By the principle of mathematical induction, prove the following:

4 + 8 + 12 + ……. + 4n = 2n(n + 1), for all n ∈ N.


By the principle of mathematical induction, prove the following:

1 + 4 + 7 + ……. + (3n – 2) = `("n"(3"n" - 1))/2`  for all n ∈ N.


By the principle of mathematical induction, prove the following:

32n – 1 is divisible by 8, for all n ∈ N.


By the principle of mathematical induction, prove the following:

2n > n, for all n ∈ N.


The term containing x3 in the expansion of (x – 2y)7 is:


By the principle of mathematical induction, prove that, for n ≥ 1
13 + 23 + 33 + ... + n3 = `(("n"("n" + 1))/2)^2`


By the principle of mathematical induction, prove that, for n ≥ 1
12 + 32 + 52 + ... + (2n − 1)2 = `("n"(2"n" - 1)(2"n" + 1))/3`


Prove that the sum of the first n non-zero even numbers is n2 + n


By the principle of Mathematical induction, prove that, for n ≥ 1
1.2 + 2.3 + 3.4 + ... + n.(n + 1) = `("n"("n" + 1)("n" + 2))/3`


Using the Mathematical induction, show that for any natural number n ≥ 2,
`1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 +2 + 3 + 4) + .... + 1/(1 + 2 +  3 + ... + "n") = ("n" - 1)/("n" + 1)`


Using the Mathematical induction, show that for any natural number n,
`1/(2.5) + 1/(5.8) + 1/(8.11) + ... + 1/((3"n" - 1)(3"n" + 2)) = "n"/(6"n" + 4)`


By the principle of Mathematical induction, prove that, for n ≥ 1
`1^2 + 2^2 + 3^2 + ... + "n"^2 > "n"^2/3`


Choose the correct alternative:
In 3 fingers, the number of ways four rings can be worn is · · · · · · · · · ways


Choose the correct alternative:
1 + 3 + 5 + 7 + · · · + 17 is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×