Advertisements
Advertisements
प्रश्न
By the principle of mathematical induction, prove the following:
32n – 1 is divisible by 8, for all n ∈ N.
उत्तर
Let P(n) denote the statement 32n – 1 is divisible by 8 for all n ∈ N
Put n = 1
P(1) is the statement 32(1) – 1 = 32 – 1 = 9 – 1 = 8, which is divisible by 8
∴ P(1) is true.
Assume that P(k) is true for n = k.
i.e., 32k – 1 is divisible by 8 to be true.
Let 32k – 1 = 8m
To prove P(k + 1) is true.
i.e., to prove `3^(2(k+1)) - 1` is divisible by 8
Consider `3^(2(k+1)) - 1` = 32k+2 – 1
= 32k . 32 – 1
= 32k (9) – 1
= 32k (8 + 1) – 1
= 32k × 8 + 32k × 1 – 1
= 32k (8) + 32k – 1
= 32k (8) + 8m (∵ 32k – 1 = 8m)
= 8(32k + m), which is divisible by 8.
∴ P(k + 1) is true wherever P(k) is true.
∴ By principle of Mathematical Induction, P(n) is true for all n ∈ N.
APPEARS IN
संबंधित प्रश्न
By the principle of mathematical induction, prove the following:
an – bn is divisible by a – b, for all n ∈ N.
The term containing x3 in the expansion of (x – 2y)7 is:
By the principle of mathematical induction, prove that, for n ≥ 1
12 + 32 + 52 + ... + (2n − 1)2 = `("n"(2"n" - 1)(2"n" + 1))/3`
Prove that the sum of the first n non-zero even numbers is n2 + n
By the principle of Mathematical induction, prove that, for n ≥ 1
1.2 + 2.3 + 3.4 + ... + n.(n + 1) = `("n"("n" + 1)("n" + 2))/3`
Using the Mathematical induction, show that for any natural number n,
`1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + ... + 1/("n"("n" + 1)*("n" + 2)) = ("n"("n" + 3))/(4("n" + 1)("n" + 2))`
Prove by Mathematical Induction that
1! + (2 × 2!) + (3 × 3!) + ... + (n × n!) = (n + 1)! − 1
Using the Mathematical induction, show that for any natural number n, x2n − y2n is divisible by x + y
By the principle of Mathematical induction, prove that, for n ≥ 1
`1^2 + 2^2 + 3^2 + ... + "n"^2 > "n"^2/3`
Choose the correct alternative:
If `""^("a"^2 - "a")"C"_2 = ""^("a"^2 - "a")"C"_4` then the value of a is