Advertisements
Advertisements
प्रश्न
By the principle of mathematical induction, prove the following:
32n – 1 is divisible by 8, for all n ∈ N.
उत्तर
Let P(n) denote the statement 32n – 1 is divisible by 8 for all n ∈ N
Put n = 1
P(1) is the statement 32(1) – 1 = 32 – 1 = 9 – 1 = 8, which is divisible by 8
∴ P(1) is true.
Assume that P(k) is true for n = k.
i.e., 32k – 1 is divisible by 8 to be true.
Let 32k – 1 = 8m
To prove P(k + 1) is true.
i.e., to prove `3^(2(k+1)) - 1` is divisible by 8
Consider `3^(2(k+1)) - 1` = 32k+2 – 1
= 32k . 32 – 1
= 32k (9) – 1
= 32k (8 + 1) – 1
= 32k × 8 + 32k × 1 – 1
= 32k (8) + 32k – 1
= 32k (8) + 8m (∵ 32k – 1 = 8m)
= 8(32k + m), which is divisible by 8.
∴ P(k + 1) is true wherever P(k) is true.
∴ By principle of Mathematical Induction, P(n) is true for all n ∈ N.
APPEARS IN
संबंधित प्रश्न
By the principle of mathematical induction, prove the following:
13 + 23 + 33 + ….. + n3 = `("n"^2("n + 1")^2)/4` for all x ∈ N.
By the principle of mathematical induction, prove the following:
4 + 8 + 12 + ……. + 4n = 2n(n + 1), for all n ∈ N.
By the principle of mathematical induction, prove the following:
an – bn is divisible by a – b, for all n ∈ N.
By the principle of mathematical induction, prove the following:
n(n + 1) (n + 2) is divisible by 6, for all n ∈ N.
Using the Mathematical induction, show that for any natural number n ≥ 2,
`(1 - 1/2^2)(1 - 1/3^2)(1 - 1/4^2) ... (1 - 1/"n"^2) = ("n" + 1)/2`
Using the Mathematical induction, show that for any natural number n ≥ 2,
`1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 +2 + 3 + 4) + .... + 1/(1 + 2 + 3 + ... + "n") = ("n" - 1)/("n" + 1)`
Using the Mathematical induction, show that for any natural number n, x2n − y2n is divisible by x + y
Use induction to prove that 10n + 3 × 4n+2 + 5, is divisible by 9, for all natural numbers n
Choose the correct alternative:
If `""^("a"^2 - "a")"C"_2 = ""^("a"^2 - "a")"C"_4` then the value of a is
Choose the correct alternative:
Everybody in a room shakes hands with everybody else. The total number of shake hands is 66. The number of persons in the room is ______