Advertisements
Advertisements
प्रश्न
By the principle of mathematical induction, prove the following:
an – bn is divisible by a – b, for all n ∈ N.
उत्तर
Let P(n) denote the statement an – bn is divisible by a – b.
Put n = 1. Then P(1) is the statement: a1 – b1 = a – b is divisible by a – b
∴ P(1) is true. Now assume that the statement be true for n = k
(i.e.,) assume P(k) be true, (i.e.,) ak – bk is divisible by (a – b) be true.
`=> (a^k - b^k)/(a-b)` = m (say) where m ∈ N
⇒ ak – bk = m(a – b)
⇒ ak = bk + m(a – b) ……. (1)
Now to prove P(k + 1) is true, (i.e.,) to prove: ak+1 – bk+1 is divisible by a – b
Consider ak+1 – bk+1 = ak . a – bk . b
= [bk + m(a – b)] a – bk . b [∵ ak = bm + k(a – b)]
= bk . a + am(a – b) – bk . b
= bk . a – bk . b + am(a – b)
= bk(a – b) + am(a – b)
= (a – b) (bk + am) is divisible by (a – b)
∴ P(k + 1) is true.
By the principle of Mathematical induction. P(n) is true for all n ∈ N.
∴ an – bn is divisible by a – b for n ∈ N.
APPEARS IN
संबंधित प्रश्न
By the principle of mathematical induction, prove the following:
52n – 1 is divisible by 24, for all n ∈ N.
The term containing x3 in the expansion of (x – 2y)7 is:
By the principle of Mathematical induction, prove that, for n ≥ 1
1.2 + 2.3 + 3.4 + ... + n.(n + 1) = `("n"("n" + 1)("n" + 2))/3`
Using the Mathematical induction, show that for any natural number n ≥ 2,
`1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 +2 + 3 + 4) + .... + 1/(1 + 2 + 3 + ... + "n") = ("n" - 1)/("n" + 1)`
Using the Mathematical induction, show that for any natural number n,
`1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + ... + 1/("n"("n" + 1)*("n" + 2)) = ("n"("n" + 3))/(4("n" + 1)("n" + 2))`
Using the Mathematical induction, show that for any natural number n,
`1/(2.5) + 1/(5.8) + 1/(8.11) + ... + 1/((3"n" - 1)(3"n" + 2)) = "n"/(6"n" + 4)`
Using the Mathematical induction, show that for any natural number n, x2n − y2n is divisible by x + y
Use induction to prove that 5n+1 + 4 × 6n when divided by 20 leaves a remainder 9, for all natural numbers n
Choose the correct alternative:
In 3 fingers, the number of ways four rings can be worn is · · · · · · · · · ways
Choose the correct alternative:
Everybody in a room shakes hands with everybody else. The total number of shake hands is 66. The number of persons in the room is ______