English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Prove that using the Mathematical inductionnnnsin(α)+sin(α+π6)+sin(α+2π6)+...+sin(α+(n-1)π6)=sin(α+(n-1)π12)×sin(nπ12)sin(π12) - Mathematics

Advertisements
Advertisements

Question

Prove that using the Mathematical induction
`sin(alpha) + sin (alpha + pi/6) + sin(alpha + (2pi)/6) + ... + sin(alpha + (("n" - 1)pi)/6) = (sin(alpha + (("n" - 1)pi)/12) xx sin(("n"pi)/12))/(sin (pi/12)`

Sum

Solution

P(n) is the statement

`sin(alpha) + sin (alpha + pi/6) + sin(alpha + (2pi)/6) + ... + sin(alpha + (("n" - 1)pi)/6)`

= `(sin(alpha + (("n" - 1)pi)/12) xx sin(("n"pi)/12))/(sin (pi/12)`

Put n = 1

⇒ P(1) = sin α = L.H.S

R.H.S = `(sin(alpha + ((1 - 1)pi)/12) sin pi/12)/(sin  pi/12)`

= sin α 

L.H.S = R.H.S

⇒ P(1) is true

Assume that the statement is true for n = k

(i.e.) P(k) = `sin(alpha) + sin(alpha + pi/6) + sin(alpha + (2pi)/6) + ... + sin(alpha + (("k" - 1)pi)/6)`

= `(sin(alpha + (("k" - 1)pi)/12) xx sin(("k"pi)/12))/(sin(pi/12)` is true

To prove P(k + 1) is true

Now P(k + 1) = P(k) + t(k + 1)

Now P(k + 1) = `"P"("k") + sin(alpha + ("k"pi)/6)`

= `(sin[alpha + ("k" - 1) pi/12] sin  ("k"pi)/12)/(sin  pi/12) + sin(alpha + ("k"pi)/6)`

= `(sin[alpha + ("k" - 1) pi/12]sin  ("k"pi)/12 + sin(alpha + ("k"pi)/6)sin  pi/12)/(sin  pi/12)`

Nr. = `1/2[cos(alpha + ("k" - 1) pi/12 - ("k"pi)/12) - cos(alpha + (("k" - 1)pi)/12 + ("k"pi)/12) + cos(alpha + ("k"pi)/6 - pi/12) - cos(alpha + ("k"pi)/6 + pi/12)]`

= `1/2[cos(alpha + ("k"pi)/12 - pi/12 - ("k"pi)/12) - cos(alpha + ("k"pi)/12 - pi/12 + ("k"pi)/12) + cos(alpha + (2"k"pi)/12 - pi/12) - cos(alpha + (2"k"pi)/12 + pi/12)]`

= `1/2[cos(alpha - pi/12) - cos(alpha + (2"k"pi)/12 - pi/12) + cos(alpha + (2"k"pi)/12 - pi/12) - cos(alpha + (2"k"pi)/12 + pi/12)]`

= `1/2[cos(alpha - pi/12) - cos(alpha + (2"k"pi)/12 + pi/12)] + sin  pi/12`

= `- sin  1/2 (2alpha + (2"k"pi)/12) sin  1/2(-(2"k"pi - 2pi)/12)`

= `sin(alpha + pi/12) sin("k" + 1)  pi/12`

Dr. = `sin  pi/12`

P(k + 1) = `(sin(alpha + pi/12) sin("k" + 1)  pi/12)/(sin  pi/12)`

⇒ P(k + 1) is true 

Whenever P(k) is true.

So by the principle of mathematical induction

P(n) is true.

shaalaa.com
Mathematical Induction
  Is there an error in this question or solution?
Chapter 4: Combinatorics and Mathematical Induction - Exercise 4.4 [Page 197]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 4 Combinatorics and Mathematical Induction
Exercise 4.4 | Q 15 | Page 197

RELATED QUESTIONS

By the principle of mathematical induction, prove the following:

13 + 23 + 33 + ….. + n3 = `("n"^2("n + 1")^2)/4` for all x ∈ N.


By the principle of mathematical induction, prove the following:

1 + 4 + 7 + ……. + (3n – 2) = `("n"(3"n" - 1))/2`  for all n ∈ N.


By the principle of mathematical induction, prove the following:

32n – 1 is divisible by 8, for all n ∈ N.


By the principle of mathematical induction, prove the following:

an – bn is divisible by a – b, for all n ∈ N.


By the principle of mathematical induction, prove the following:

n(n + 1) (n + 2) is divisible by 6, for all n ∈ N.


By the principle of mathematical induction, prove the following:

2n > n, for all n ∈ N.


The term containing x3 in the expansion of (x – 2y)7 is:


Prove that the sum of the first n non-zero even numbers is n2 + n


By the principle of Mathematical induction, prove that, for n ≥ 1
1.2 + 2.3 + 3.4 + ... + n.(n + 1) = `("n"("n" + 1)("n" + 2))/3`


Using the Mathematical induction, show that for any natural number n ≥ 2,
`(1 - 1/2^2)(1 - 1/3^2)(1 - 1/4^2) ... (1 - 1/"n"^2) = ("n" + 1)/2`


Using the Mathematical induction, show that for any natural number n ≥ 2,
`1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 +2 + 3 + 4) + .... + 1/(1 + 2 +  3 + ... + "n") = ("n" - 1)/("n" + 1)`


Using the Mathematical induction, show that for any natural number n,
`1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + ... + 1/("n"("n" + 1)*("n" + 2)) = ("n"("n" + 3))/(4("n" + 1)("n" + 2))`


Using the Mathematical induction, show that for any natural number n,
`1/(2.5) + 1/(5.8) + 1/(8.11) + ... + 1/((3"n" - 1)(3"n" + 2)) = "n"/(6"n" + 4)`


Prove by Mathematical Induction that
1! + (2 × 2!) + (3 × 3!) + ... + (n × n!) = (n + 1)! − 1


Using the Mathematical induction, show that for any natural number n, x2n − y2n is divisible by x + y


By the principle of Mathematical induction, prove that, for n ≥ 1
`1^2 + 2^2 + 3^2 + ... + "n"^2 > "n"^2/3`


Use induction to prove that n3 − 7n + 3, is divisible by 3, for all natural numbers n


Choose the correct alternative:
If `""^("a"^2 - "a")"C"_2 = ""^("a"^2 - "a")"C"_4` then the value of a is


Choose the correct alternative:
Everybody in a room shakes hands with everybody else. The total number of shake hands is 66. The number of persons in the room is ______


Choose the correct alternative:
1 + 3 + 5 + 7 + · · · + 17 is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×