Advertisements
Advertisements
प्रश्न
Calculate emf of the following cell at 298 K:
Mg(s) | Mg2+(0.1 M) || Cu2+ (0.01) | Cu(s)
[Given Eocell = +2.71 V, 1 F = 96500 C mol–1]
उत्तर
The cell reaction can be represented as:
Mg(s) + Cu2+(aq.) → Mg2+(aq.) + Cu(s)
\[Given, \]
\[ E_{cell}^o = + 2 . 71 V\]
\[T = 298 K\]
\[\text{According to the Nernst equation:} \]
\[E = E_{cell}^o - \frac{0 . 0591}{2}\log\frac{[ {Mg}^{2 +} ]}{\left[ {Cu}^{2 +} \right]} = 2 . 71 - \frac{0 . 0591}{2}\log\frac{0 . 1}{0 . 01}\]
\[ = 2 . 71 - 0 . 0295 \log 10 = 2 . 71 - 0 . 0295\]
\[ = 2 . 6805 V\]
APPEARS IN
संबंधित प्रश्न
Calculate the e.m.f. of the following cell at 298 K:
Fe(s) | Fe2+ (0.001 M) | | H+ (0.01 M) | H2(g) (1 bar) | Pt(s)
Given that \[\ce{E^0_{cell}}\] = 0.44 V
[log 2 = 0.3010, log 3 = 0.4771, log 10 = 1]
Write the Nernst equation and emf of the following cell at 298 K:
\[\ce{Mg_{(s)} | Mg^{2+} (0.001 M) || Cu^{2+} (0.0001 M) | Cu_{(s)}}\]
Write the Nemst equation and explain the terms involved.
Calculate the value of Ecell at 298 K for the following cell:
`(Al)/(Al^(3+)) (0.01M) || Sn^(2+) ((0.015 M))/(Sn)`
`E° _(Al^(3+))/(AI)= -1.66 " Volt and " E° _(Sn^(2+)) /(Sn) = -0.14` volt
For a general electrochemical reaction of the type:
\[\ce{{a}A + {b}B ⇔ {c}C + {d}D}\]
Nernst equation can be written as:
Calculate ΔrG0 and log Kc for the following cell:
\[\ce{Ni(s) + 2Ag^+(aq) -> Ni^{2+}(aq) + 2Ag(s)}\]
Given that \[\ce{E^0_{cell}}\] = 1.05 V, 1F = 96,500 C mol–1.
The cell potential for the given cell at 298 K Pt | H2 (g, 1 bar) | H+ (aq) | | Cu2+ (aq) | Cu(s) is 0.31 V. The pH of the acidic solution is found to be 3, whereas the concentration of Cu2+ is 10-x M. The value of x is ______.
[Given: (\[\ce{E_{Cu^{2+}/Cu}}\]) = 0.34 V and `(2.303 " RT")/"F"` = 0.06 V]
Calculate the emf of the following cell at 298 K:
Fe(s) | Fe2+ (0.01 M) | | H+ (1 M) | H2(g) (1 bar) Pt(s)
Given \[\ce{E^0_{cell}}\] = 0.44 V.
Write the Nernst equation and emf of the following cell at 298 K:
\[\ce{Sn_{(s)} | Sn^{2+} (0.050 M) || H^+ (0.020 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]
Write the Nernst equation and emf of the following cell at 298 K:
\[\ce{Pt_{(s)} | Br^- (0.010 M) | Br2_{(l)} || H^+ (0.030 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]