Advertisements
Advertisements
प्रश्न
Calculate the Q-values of the following fusion reactions :-
(a) `""_1^2H + ""_1^2H → ""_1^3H + ""_1^1H`
(b) `""_1^2H + ""_1^2H → ""_2^3H + n`
(c) `""_1^2H + ""_1^3H → _2^4H + n`.
Atomic masses are `m(""_1^2H) = 2.014102 "u", m(""_1^3H) = 3.016049 "u", m(""_2^3He) = 3.016029 "u", m(""_2^4He) = 4.002603 "u".`
(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)
उत्तर
(a) `Q = [2 xx m""_1^2"H" - (m(""_3^3"H") + m(""_1^3"H"))]c^2`
`= (4.028204 - 4.023874) xx 931` MeV
= 4.05 MeV
(b) `Q = [2 xx m ""_1^2"H" - (m_2^3"H" + m_n)]c^2`
`= [4.028204 - 4.024694] xx 931`
`= 0.00351 xx 931`
= 3.25 MeV
(c) `Q = [m ""_1^2"H" + m _1^3"H" - m _1^4"He"- m_n)]c^2`
`= (2.014102 + 3.016049 - 4.002603 - 1.008665) xx 931`
= 17.57 MeV
APPEARS IN
संबंधित प्रश्न
Calculate the energy in fusion reaction:
`""_1^2H+_1^2H->_2^3He+n`, where BE of `""_1^2H`23He=7.73MeV" data-mce-style="position: relative;">=2.2323He=7.73MeV MeV and of `""_2^3He=7.73 MeV`
Distinguish between nuclear fission and fusion. Show how in both these processes energy is released. Calculate the energy release in MeV in the deuterium-tritium fusion reaction :
`""_1^2H+_1^3H->_2^4He+n`
Using the data :
m(`""_1^2H`) = 2.014102 u
m(`""_1^3H`) = 3.016049 u
m(`""_2^4He`) = 4.002603 u
mn = 1.008665 u
1u = 931.5 MeV/c2
In a photon-electron collision ______.
(A) only total energy is conserved.
(B) only total momentum is conserved.
(C) both total energy and total momentum are conserved.
(D) both total momentum and total energy are not conserved
How long can an electric lamp of 100W be kept glowing by fusion of 2.0 kg of deuterium? Take the fusion reaction as
\[\ce{^2_1H + ^2_1H -> ^3_1He + n + 3.27 MeV}\]
Calculate the height of the potential barrier for a head on collision of two deuterons.
(Hint: The height of the potential barrier is given by the Coulomb repulsion between the two deuterons when they just touch each other. Assume that they can be taken as hard spheres of radius 2.0 fm.)
Write notes on Nuclear fission
Explain the processes of nuclear fission and nuclear fusion by using the plot of binding energy per nucleon (BE/A) versus the mass number A
Write one balanced equation to show Nuclear fusion
Free 238U nuclei kept in a train emit alpha particles. When the train is stationary and a uranium nucleus decays, a passenger measures that the separation between the alpha particle and the recoiling nucleus becomes x in time t after the decay. If a decay takes place when the train is moving at a uniform speed v, the distance between the alpha particle and the recoiling nucleus at a time t after the decay, as measured by the passenger will be
During a nuclear fission reaction,
Show that the minimum energy needed to separate a proton from a nucleus with Zprotons and N neutrons is `ΔE = (M_(Z-1,N) + M_B - M_(Z,N))c^2`
where MZ,N = mass of an atom with Z protons and N neutrons in the nucleus and MB = mass of a hydrogen atom. This energy is known as proton-separation energy.
Consider the fusion in helium plasma. Find the temperature at which the average thermal energy 1.5 kT equals the Coulomb potential energy at 2 fm.
Why nuclear fusion reaction is also called thermo-nuclear reaction?
Write one balanced reaction representing nuclear fusion.
In our Nature, where is the nuclear fusion reaction taking place continuously?
Briefly explain the elementary particles present in nature.