Advertisements
Advertisements
प्रश्न
Calculate the co-ordinates of the point P which divides the line segment joining: A (–4, 6) and B (3, –5) in the ratio 3 : 2
उत्तर
Let the co-ordinates of the point P be (x, y).
`x = (m_1x_2 + m_2x_1)/(m_1 + m_2)`
= `(3 xx 3 + 2 xx (-4))/(3 + 2)`
= `1/5`
`y = (m_1y_2 + m_2y_1)/(m_1 + m_2)`
= `(3 xx (-5) + 2 xx 6)/(3 + 2)`
= `(-3)/5`
Thus, the co-ordinates of point P are `(1/5, (-3)/5)`
APPEARS IN
संबंधित प्रश्न
In what ratio is the line joining (2, –3) and (5, 6) divided by the x-axis?
In what ratio does the point (1, a) divide the join of (–1, 4) and (4, –1)? Also, find the value of a.
Calculate the ratio in which the line joining A(-4,2) and B(3,6) is divided by point p(x,3). Also, find x
Find the image of the point A(5, –3) under reflection in the point P(–1, 3).
Find the image of the point A(5,3) under reflection in the point P(-1,3).
Find the image of the point A(5,3) under reflection in the point P(-1,3).
Show that the points A(1, 3), B(2, 6), C(5, 7) and D(4, 4) are the vertices of a rhombus.
= `a(1/t^2 + 1) = (a(t^2 + 1))/t^2`
Now `(1)/"SP" + (1)/"SQ" = (1)/(a(t^2 + 1)) + (1 xx t^2)/(a(t^2 + 1)`
= `((1 + t^2))/(a(t^2 + 1)`
`(1)/"SP" + (1)/"SQ" = (1)/a`.
If the line joining the points A(4, - 5) and B(4, 5) is divided by the point P such that `"AP"/"AB" = (2)/(5)`, find the coordinates of P.
In the following figure line APB meets the X-axis at A, Y-axis at B. P is the point (4, -2) and AP: PB = 1: 2. Write down the coordinates of A and B.
Determine the centre of the circle on which the points (1, 7), (7 – 1), and (8, 6) lie. What is the radius of the circle?