Advertisements
Advertisements
Question
Calculate the co-ordinates of the point P which divides the line segment joining: A (–4, 6) and B (3, –5) in the ratio 3 : 2
Solution
Let the co-ordinates of the point P be (x, y).
`x = (m_1x_2 + m_2x_1)/(m_1 + m_2)`
= `(3 xx 3 + 2 xx (-4))/(3 + 2)`
= `1/5`
`y = (m_1y_2 + m_2y_1)/(m_1 + m_2)`
= `(3 xx (-5) + 2 xx 6)/(3 + 2)`
= `(-3)/5`
Thus, the co-ordinates of point P are `(1/5, (-3)/5)`
APPEARS IN
RELATED QUESTIONS
In what ratio is the line joining (2, –4) and (–3, 6) divided by the y-axis?
Calculate the ratio in which the line joining A(-4,2) and B(3,6) is divided by point p(x,3). Also, find x
The line joining the points (2, 1) and (5, –8) is trisected at the point P and Q. If point P lies on the line 2x – y + k = 0, find the value of k. Also, find the co-ordinates of point Q.
M is the mid-point of the line segment joining the points A(0, 4) and B(6, 0). M also divides the line segment OP in the ratio 1 : 3. Find :
- co-ordinates of M
- co-ordinates of P
- length of BP
Find the image of the point A(5,3) under reflection in the point P(-1,3).
Show that the points A(1, 3), B(2, 6), C(5, 7) and D(4, 4) are the vertices of a rhombus.
= `a(1/t^2 + 1) = (a(t^2 + 1))/t^2`
Now `(1)/"SP" + (1)/"SQ" = (1)/(a(t^2 + 1)) + (1 xx t^2)/(a(t^2 + 1)`
= `((1 + t^2))/(a(t^2 + 1)`
`(1)/"SP" + (1)/"SQ" = (1)/a`.
If the line joining the points A(4, - 5) and B(4, 5) is divided by the point P such that `"AP"/"AB" = (2)/(5)`, find the coordinates of P.
Determine the ratio in which the line 3x + y – 9 = 0 divides the line joining (1, 3) and (2, 7).
In the following figure line APB meets the X-axis at A, Y-axis at B. P is the point (4, -2) and AP: PB = 1: 2. Write down the coordinates of A and B.
Determine the centre of the circle on which the points (1, 7), (7 – 1), and (8, 6) lie. What is the radius of the circle?