Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
Quantity Index Number by Simple Aggregate Method is given by
पर्याय
`sum "q"_1/"q"_0 xx 100`
`sum "q"_0/"q"_1 xx 100`
`(sum "q"_1)/(sum"q"_0) xx 100`
`(sum "q"_1)/(sum"q"_0) xx 100`
उत्तर
Quantity Index Number by Simple Aggregate Method is given by `(sum "q"_1)/(sum"q"_0) xx 100`.
APPEARS IN
संबंधित प्रश्न
Choose the correct alternative :
Price Index Number by Simple Aggregate Method is given by
Fill in the blank :
Quantity Index Number by Weighted Aggregate Method is given by _______.
State whether the following is True or False :
`(sum"p"_1)/(sum"p"_0) xx 100` is the price Index Number by Simple Aggregate Method.
`sum ("p"_0"q"_0)/("p"_1"q"_1) xx 100` is Value Index Number by Simple Aggregate Method.
Solve the following problem :
Find the Price Index Number using Simple Aggregate Method. Consider 1980 as base year.
Commodity | Price in 1980 (in ₹) | Price in 1985 (in ₹) |
I | 22 | 46 |
II | 38 | 36 |
III | 20 | 28 |
IV | 18 | 44 |
V | 12 | 16 |
Price Index Number by Weighted Aggregate Method is given by ______
State whether the following statement is True or False:
`sum("q"_1)/("q"_0) xx 100` is the Quantity Index Number by Simple Aggregate Method
Calculate Value Index Number for the following using Simple Aggregate Method
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 30 | 13 | 40 | 15 |
B | 40 | 15 | 70 | 20 |
C | 10 | 12 | 60 | 22 |
D | 50 | 10 | 90 | 18 |
E | 20 | 14 | 100 | 16 |
Calculate Quantity Index Number using Simple Aggregate method
Commodity | I | II | III | IV | V |
Base year Quantity | 140 | 120 | 100 | 200 | 225 |
Current year Quantity | 100 | 80 | 70 | 150 | 185 |
Find Price Index Number using Simple Aggregate method by taking 2000 as base year
Commodity | Price (in ₹) for year 2000 |
Price (in ₹) for year 2007 |
Watch | 900 | 1,475 |
Shoes | 1,760 | 2,300 |
Sunglasses | 60 | 1,040 |
Mobile | 4,500 | 8,500 |
Find x if the Price Index Number by Simple Aggregate Method is 125
Commodity | P | Q | R | S | T |
Base Year Price (in ₹) | 10 | 8 | 12 | 24 | 18 |
Current Year Price (in ₹) | 14 | 10 | x | 28 | 22 |
Find values x and y if the Price Index Number by Simple Aggregate Method by taking 2001 as base year is 120, given `sum"p"_1` = 300.
Commodity | A | B | C | D |
Price (in ₹) in 2001 | 90 | x | 90 | 30 |
Price (in ₹) in 2004 | 95 | 60 | y | 35 |
Find x from following data if the Value Index Number is 200.
Commodity | Base Year | Current Year | ||
Prive | Quantity | Price | Quantity | |
A | 10 | 10 | 20 | 10 |
B | 8 | 20 | 22 | 15 |
C | 2 | x | 8 | 10 |
D | 9 | 10 | 16 | 10 |
E | 5 | 6 | 3 | 10 |
Choose the correct pair :
Group A | Group B |
1) Price Index | a) `(sum p_1q_1)/(sum p_0q_0) xx 100` |
2) Value Index | b) `(sum q_1)/(sum q_0) xx 100` |
3) Quantity Index | c) `(sum p_1q_1)/(sum p_0 q_1) xx 100` |
4) Paasche's Index | d) `(sum p_1)/(sum p_0) xx 100` |
State with reason whether you agree or disagree with the following statement:
The quantity index number is one type of index number.
State with reasons whether you agree or disagree with the following statement.
There are many types of index numbers.
Choose the correct pair :
Group A | Group B | ||
1) | Price Index | a) | `(sump_1q_1)/(sump_0q_0) xx 100` |
2) | Value Index | b) | `(sumq_1)/(sumq_0) xx 100` |
3) | Quantity Index | c) | `(sump_1q_1)/(sump_0q_1) xx 100` |
4) | Paasche's Index | d) | `(sump_1)/(sump_0) xx 100` |