मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Consider an Assembly of Three Conducting Concentric Spherical Shell of Radii A, B and Cas Shown in Figure Find the Capacitance of the Assembly Between the Points Aand B. - Physics

Advertisements
Advertisements

प्रश्न

Consider an assembly of three conducting concentric spherical shell of radii a, b and c as shown in figure Find the capacitance of the assembly between the points Aand B.

बेरीज

उत्तर

The spherical shells form two spherical capacitors: one made by A and B and the other made by B and C.

The capacitance of the spherical capacitor made by the shells of radii r1 and r2 is given by 

`C = (4pi∈_0)/[[1/r_1 - 1/r^2]] = (4pi∈_0r_1r_2)/(r_2 - r_1)`

The capacitance of the capacitor made by A and B is given by

`C_(AB) = (4pi∈_0ab)/(b-a)`

The capacitance of the capacitor made by B and C is given by

`C_(BC) = (4pi∈_0bc)/(c-b)`

As the capacitors are in series, the net capacitance is given by

`1/C = 1/C_(AB) + 1/C_(BC)`

⇒ `C = (C_(AB)C_(BC))/(C_(AB)+C_(BC)) = (((4pi∈_0)^2 ab^2c)/((b-a)(c-b)))/((4pi∈_0ab)/((b-a))+(4pi∈_0bc)/((c-b))`

⇒ `C = ((4pi∈_0ab^2c)/((b-a)(c-b)))/(((ab(c-b)+bc(b-a))/((b-a)(c-b))))`

⇒ `C = (4pi∈_0ab^2c)/[[ab(c-b)+bc(b-a)]]`

⇒ `C = (4pi∈_0ab^2c)/(b^2(c-a)) = (4pi∈_0ac)/((c-a))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Capacitors - Exercises [पृष्ठ १७०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 9 Capacitors
Exercises | Q 62 | पृष्ठ १७०

संबंधित प्रश्‍न

A capacitor of capacitance ‘C’ is charged to ‘V’ volts by a battery. After some time the battery is disconnected and the distance between the plates is doubled. Now a slab of dielectric constant, 1 < k < 2, is introduced to fill the space between the plates. How will the following be affected? (a) The electric field between the plates of the capacitor Justify your answer by writing the necessary expressions.


Find the equivalent capacitance of the network shown in the figure, when each capacitor is of 1 μF. When the ends X and Y are connected to a 6 V battery, find out (i) the charge and (ii) the energy stored in the network.


A spherical capacitor has an inner sphere of radius 12 cm and an outer sphere of radius 13 cm. The outer sphere is earthed and the inner sphere is given a charge of 2.5 µC. The space between the concentric spheres is filled with a liquid of dielectric constant 32.

(a) Determine the capacitance of the capacitor.

(b) What is the potential of the inner sphere?

(c) Compare the capacitance of this capacitor with that of an isolated sphere of radius 12 cm. Explain why the latter is much smaller.


A capacitor of capacitance ‘C’ is being charged by connecting it across a dc source along with an ammeter. Will the ammeter show a momentary deflection during the process of charging? If so, how would you explain this momentary deflection and the resulting continuity of current in the circuit? Write the expression for the current inside the capacitor.


Three capacitors of capacitances 6 µF each are available. The minimum and maximum capacitances, which may be obtained are


The capacitance of a capacitor does not depend on


Following operations can be performed on a capacitor:
X − connect the capacitor to a battery of emf ε.
Y − disconnect the battery.
Z − reconnect the battery with polarity reversed.
W − insert a dielectric slab in the capacitor.
(a) In XYZ (perform X, then Y, then Z) the stored electric energy remains unchanged and no thermal energy is developed.
(b) The charge appearing on the capacitor is greater after the action XWY than after the action XYZ.
(c) The electric energy stored in the capacitor is greater after the action WXY than after the action XYW.
(d) The electric field in the capacitor after the action XW is the same as that after WX.


Suppose, one wishes to construct a 1⋅0 farad capacitor using circular discs. If the separation between the discs be kept at 1⋅0 mm, what would be the radius of the discs?


Find the charge supplied by the battery in the arrangement shown in figure.


A capacitor is made of a flat plate of area A and a second plate having a stair-like structure as shown in figure . The width of each stair is a and the height is b. Find the capacitance of the assembly.


Obtain an expression for equivalent capacitance when three capacitors C1, C2 and C3 are connected in series.


Obtain the expression for energy stored in the parallel plate capacitor.


A capacitor works in ______.

Capacitors are used in electrical circuits where appliances need more ______.

Five capacitor each of capacitance value C are connected as shown in the figure. The ratio of capacitance between P to R, and the capacitance between P and Q is ______.


Two similar conducting spheres having charge+ q and -q are placed at 'd' seperation from each other in air. The radius of each ball is r and the separation between their centre is d (d >> r). Calculate the capacitance of the two ball system ______.


A parallel plate capacitor is filled by a dielectric whose relative permittivity varies with the applied voltage (U) as ε = αU where α = 2V–1. A similar capacitor with no dielectric is charged to U0 = 78V. It is then connected to the uncharged capacitor with the dielectric. Find the final voltage on the capacitors.


For changing the capacitance of a given parallel plate capacitor, a dielectric material of dielectric constant K is used, which has the same area as the plates of the capacitor.

The thickness of the dielectric slab is `3/4`d, where 'd' is the separation between the plate of the parallel plate capacitor.

The new capacitance (C') in terms of the original capacitance (C0) is given by the following relation:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×