मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

Consider the following transportation problem Destination Availability D1 D2 D3 D4 O1 5 8 3 6 30 O2 4 5 7 4 50 O3 6 2 4 6 20 Requirement 30 40 20 10 Determine an initial basic feasible solution using - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Consider the following transportation problem

  Destination Availability
  D1 D2 D3 D4  
O1 5 8 3 6 30
O2 4 5 7 4 50
O3 6 2 4 6 20
Requirement 30 40 20 10  

Determine an initial basic feasible solution using Vogel’s approximation method

तक्ता
बेरीज

उत्तर

Let ‘ai‘ denote the availability and ‘bj‘ denote the requirement.

Then, `sum"a"_"i"` = 30 + 50 + 20 = 100 and `sum"b"_"j"` = 30 + 40 + 20 + 10 = 100

Since `sum"a"_"i" = sum"b"_"j"`.

The given problem is a balanced transportation problem and we can get an initial basic feasible solution.

Vogel’s approximation method:

First allocation:

  D1 D2 D3 D4 (ai) penalty
O1 5 8 3 6 30 (2)
O2 4 5 7 4 50 (1)
O3 6 (20)2 4 6 20/0 (2)
(bj) 30 40/20 20 10    
penalty (1) (3) (1) (2)    

The largest penalty = 3.

So allocate 20 units to the cell (O3, D2) which has the least cost in column D2 

Second allocation:

  D1 D2 D3 D4 (ai) penalty
O1 5 8 (20)3 6 30/10 (2)
O2 4 5 7 4 50 (1)
(bj) 30 20 20/0 10    
penalty (1) (3) (4) (2)    

Largest penalty = 4

So allocate min (20, 30) units to the cell (O1, D3) which has the least cost in column D3

Third allocation:

  D1 D2 D4 (ai) penalty
O1 5 8 6 10 (1)
O2 4 (20)5 4 50/30 (1)
(bj) 30 20/10 10    
penalty (1) (3) (2)    

The largest penalty is 3.

So allocate min (20, 50) to the cell (O2, D2) which has the least cost in column D2.

Fourth allocation:

  D1 D4 (ai) penalty
O1 5 6 10 (1)
O2 4 (10)4 30/20 (0)
(bj) 30 10/0    
penalty (1) (2)    

Largest penalty = 2.

So allocate min (10, 30) to cell (O2, D4) which has the least cost in column D4

Fifth allocation:

  D1 (ai) penalty
O1 (10)5 10/0
O2 (20)4 20/0
(bj) 30/10/0    
penalty (1)    

Largest penalty = 1.

Allocate min (30, 20) to cell (O2, D1) which has the least cost in column D1.

Finally allot the balance 10 units to cell (O1, D1)

We get the final allocation table as follows.

  D1 D2 D3 D4 Availability
O1 (10)5 8 (20)3 6 30
O2 (20)4 (20)5 7 (10)4 50
O3 6 (20)2 4 6 20
Requirement 30 40 20 10  

Transportation schedule:

O1 → D1

O1 → D3

O2 → D1

O2 → D2

O2 → D4

O3 → D2

i.e x11 = 10

x13 = 20

x21 = 20

x22 = 20

x24 = 10

x32 = 20

Total cost is given by = (10 × 5) + (20 × 3) + (20 × 4) + (20 × 5) + (10 × 4) + (20 × 2)

= 50 + 60 + 80+ 100 + 40 + 40

= 370
Hence the minimum cost by YAM is ₹ 370.

shaalaa.com
Transportation Problem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Operations Research - Miscellaneous problems [पृष्ठ २६२]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 10 Operations Research
Miscellaneous problems | Q 2. (b) | पृष्ठ २६२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×