Advertisements
Advertisements
प्रश्न
Consider the following transportation problem
Detination | Availabiity | ||||
D1 | D2 | D3 | D4 | ||
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine an initial basic feasible solution using Least cost method
उत्तर
Let ‘ai‘ denote the availability and ‘bj‘ denote the requirement. Then,
`sum"a"_"i"` = 30 + 50 + 20 = 100 and `sum"b"_"j"` = 30 + 40 + 20 + 10 = 100
Since `sum"a"_"i" = sum"b"_"j"`
The given problem is a balanced transportation problem and we can get an initial basic feasible solution.
Least Cost Method (LCM)
First allocation:
Total Availability = Total Requirement = 100
∴ The given problem is balanced transformation problem.
Hence there exists a feasible solution to the given problem
First allocation:
D1 | D2 | D3 | D4 | (ai) | |
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | (20)2 | 4 | 6 | 20/0 |
(bj) | 30 | 40/20 | 20 | 10 |
Second allocation:
D1 | D2 | D3 | D4 | (ai) | |
O1 | 5 | 8 | (20)3 | 6 | 30/10 |
O2 | 4 | 5 | 7 | 4 | 50 |
(bj) | 30 | 20 | 20/0 | 10 |
Third allocation:
D1 | D2 | D4 | (ai) | |
O1 | 5 | 8 | 6 | 10 |
O2 | (30)4 | 5 | 4 | 50/20 |
(bj) | 30/0 | 20 | 10 |
Fourth allocation:
D2 | D4 | (ai) | |
O1 | 8 | 6 | 10 |
O2 | 5 | (10)4 | 20/10 |
(bj) | 20 | 10/0 |
Fifth allocation:
D2 | (ai) | |
O1 | (10)8 | 10/0 |
O2 | (10)5 | 10/00 |
(bj) | 20/10/0 |
We first allocate 10 units to cell (O2, D2).
Since it has a minimum cost.
Then we allocate the balance 10 units to cell (O1, D2).
Thus we get the final allocation table as given below.
D1 | D2 | D3 | D4 | Availability | |
O1 | 5 | (10)8 | (20)3 | 6 | 30 |
O2 | (30)4 | (10)5 | 7 | (10)4 | 50 |
O3 | 6 | (20)2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Transportation schedule:
O1 → D2
O1 → D3
O2 → D1
O2 → D2
O2 → D4
O3 → D2
(i.e) x12 = 10
x13 = 20
x21 = 30
x22 = 10
x24 = 10
x32 = 20
The total cost is = (10 × 8) + (20 × 3) + (30 × 4) + (10 × 5) + (10 × 4) + (20 × 2)
= 80 + 60+ 120 + 50 + 40 + 40
= 390
Thus the LCM, we get the minimum cost for the transportation problem as ₹ 390.
APPEARS IN
संबंधित प्रश्न
Write mathematical form of transportation problem
Determine an initial basic feasible solution of the following transportation problem by north west corner method.
Bangalore | Nasik | Bhopal | Delhi | Capacity | |
Chennai | 6 | 8 | 8 | 5 | 30 |
Madurai | 5 | 11 | 9 | 7 | 40 |
Trickly | 8 | 9 | 7 | 13 | 50 |
Demand (Units/day) |
35 | 28 | 32 | 25 |
Obtain an initial basic feasible solution to the following transportation problem by using least-cost method.
D1 | D2 | D3 | Supply | |
O1 | 9 | 8 | 5 | 25 |
O2 | 6 | 8 | 4 | 35 |
O3 | 7 | 6 | 9 | 40 |
Demand | 30 | 25 | 45 |
Explain Vogel’s approximation method by obtaining initial feasible solution of the following transportation problem.
D1 | D2 | D3 | D4 | Supply | |
O1 | 2 | 3 | 11 | 7 | 6 |
O2 | 1 | 0 | 6 | 1 | 1 |
O3 | 5 | 8 | 15 | 9 | 10 |
Demand | 7 | 5 | 3 | 2 |
Consider the following transportation problem.
D1 | D2 | D3 | D4 | Availability | |
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine initial basic feasible solution by VAM.
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using North West Corner rule
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using Vogel’s approximation method
Choose the correct alternative:
The transportation problem is said to be unbalanced if ______
Choose the correct alternative:
In a non – degenerate solution number of allocation is
Consider the following transportation problem
Destination | Availability | ||||
D1 | D2 | D3 | D4 | ||
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine an initial basic feasible solution using Vogel’s approximation method