मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

Consider the following transportation problem Detination Availabiity D1 D2 D3 D4 O1 5 8 3 6 30 O2 4 5 7 4 50 O3 6 2 4 6 20 Requirement 30 40 20 10 Determine an initial basic feasible - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Consider the following transportation problem

  Detination Availabiity
  D1 D2 D3 D4  
O1 5 8 3 6 30
O2 4 5 7 4 50
O3 6 2 4 6 20
Requirement 30 40 20 10  

Determine an initial basic feasible solution using Least cost method

तक्ता
बेरीज

उत्तर

Let ‘ai‘ denote the availability and ‘bj‘ denote the requirement. Then,

`sum"a"_"i"` = 30 + 50 + 20 = 100 and `sum"b"_"j"` = 30 + 40 + 20 + 10 = 100

Since `sum"a"_"i" = sum"b"_"j"`

The given problem is a balanced transportation problem and we can get an initial basic feasible solution.

Least Cost Method (LCM)

First allocation:

Total Availability = Total Requirement = 100

∴ The given problem is balanced transformation problem.

Hence there exists a feasible solution to the given problem

First allocation:

  D1 D2 D3 D4 (ai)
O1 5 8 3 6 30
O2 4 5 7 4 50
O3 6 (20)2 4 6 20/0
(bj) 30 40/20 20 10  

Second allocation:

  D1 D2 D3 D4 (ai)
O1 5 8 (20)3 6 30/10
O2 4 5 7 4 50
(bj) 30 20 20/0 10  

Third allocation:

  D1 D2 D4 (ai)
O1 5 8 6 10
O2 (30)4 5 4 50/20
(bj) 30/0 20 10  

Fourth allocation:

  D2 D4 (ai)
O1 8 6 10
O2 5 (10)4 20/10
(bj) 20 10/0  

Fifth allocation:

  D2 (ai)
O1 (10)8 10/0
O2 (10)5 10/00
(bj) 20/10/0  

We first allocate 10 units to cell (O2, D2).

Since it has a minimum cost.

Then we allocate the balance 10 units to cell (O1, D2).

Thus we get the final allocation table as given below.

  D1 D2 D3 D4 Availability
O1 5 (10)8 (20)3 6 30
O2 (30)4 (10)5 7 (10)4 50
O3 6 (20)2 4 6 20
Requirement 30 40 20 10  

Transportation schedule:

O1 → D2

O1 → D3

O2 → D1

O2 → D2

O2 → D4

O3 → D2

(i.e) x12 = 10

x13 = 20

x21 = 30

x22 = 10

x24 = 10

x32 = 20

The total cost is = (10 × 8) + (20 × 3) + (30 × 4) + (10 × 5) + (10 × 4) + (20 × 2)

= 80 + 60+ 120 + 50 + 40 + 40

= 390

Thus the LCM, we get the minimum cost for the transportation problem as ₹ 390.

shaalaa.com
Transportation Problem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Operations Research - Miscellaneous problems [पृष्ठ २६२]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 10 Operations Research
Miscellaneous problems | Q 2. (a) | पृष्ठ २६२

संबंधित प्रश्‍न

Write mathematical form of transportation problem


Determine an initial basic feasible solution of the following transportation problem by north west corner method.

  Bangalore Nasik Bhopal Delhi Capacity
Chennai 6 8 8 5 30
Madurai 5 11 9 7 40
Trickly 8 9 7 13 50
Demand
(Units/day)
35 28 32 25  

Obtain an initial basic feasible solution to the following transportation problem by using least-cost method.

  D1 D2 D3 Supply
O1 9 8 5 25
O2 6 8 4 35
O3 7 6 9 40
Demand 30 25 45  

Explain Vogel’s approximation method by obtaining initial feasible solution of the following transportation problem.

  D1 D2 D3 D4 Supply
O1 2 3 11 7 6
O2 1 0 6 1 1
O3 5 8 15 9 10
Demand 7 5 3 2  

Consider the following transportation problem.

  D1 D2 D3 D4 Availability
O1 5 8 3 6 30
O2 4 5 7 4 50
O3 6 2 4 6 20
Requirement 30 40 20 10  

Determine initial basic feasible solution by VAM.


Find the initial basic feasible solution of the following transportation problem:

  I II III Demand
A 1 2 6 7
B 0 4 2 12
C 3 1 5 11
Supply 10 10 10  

Using North West Corner rule


Find the initial basic feasible solution of the following transportation problem:

  I II III Demand
A 1 2 6 7
B 0 4 2 12
C 3 1 5 11
Supply 10 10 10  

Using Vogel’s approximation method


Choose the correct alternative:

The transportation problem is said to be unbalanced if ______


Choose the correct alternative:

In a non – degenerate solution number of allocation is


Consider the following transportation problem

  Destination Availability
  D1 D2 D3 D4  
O1 5 8 3 6 30
O2 4 5 7 4 50
O3 6 2 4 6 20
Requirement 30 40 20 10  

Determine an initial basic feasible solution using Vogel’s approximation method


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×