मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

Obtain an initial basic feasible solution to the following transportation problem by using least-cost method. D1 D2 D3 Supply O1 9 8 5 25 O2 6 8 4 35 O3 7 6 9 40 Demand 30 25 45 - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Obtain an initial basic feasible solution to the following transportation problem by using least-cost method.

  D1 D2 D3 Supply
O1 9 8 5 25
O2 6 8 4 35
O3 7 6 9 40
Demand 30 25 45  
तक्ता
बेरीज

उत्तर

Total supply = 25 + 35 + 40 = 100

Total demand = 30 + 25 + 45 = 100

Total supply = Total demand

∴ The given problem is a balanced transportation problem.

Hence there exists a feasible solution to the given problem.

Let ‘ai’ denote the supply and ‘bj’ denote the demand. We allocate the units according to the least transportation cost of each cell.

First allocation:

  D1 D2 D3 (ai)
O1 9 8 5 25
O2 6 8 (35)4 35/0
O3 7 6 9 40
(bj) 30 25 45/10  

The least-cost 4 corresponds to cell (O2, D3).

So first we allocate to this cell.

Second allocation:

  D1 D2 D3 (ai)
O1 9 8 (10)5 25/15
O2 6 8 (35)4 35/0
O3 7 6 9 40
(bj) 30 25 45/10/0  

The least-cost 5 corresponds to cell (O1, D3).

So we have allocated min (10, 25) to this cell.

Third allocation:

  D1 D2 D3 (ai)
O1 9 8 (10)5 25/15
O2 6 8 (35)4 35/0
O3 7 (25)6 9 40/15
(bj) 30 25/0 45/10/0  

The least-cost 6 corresponds to cell (O3, D2).

So we have allocated min (25, 40) to this cell.

Fourth allocation:

  D1 D2 D3 (ai)
O1 9 8 (10)5 25/15
O2 6 8 (35)4 35/0
O3 (15)7 (25)6 9 40/15/0
(bj) 30/15 25/0 45/10/0  

The least-cost 7 corresponds to cell (O3, D1).

So we have allocated min (30, 15) to this cell.

Final allocation:

Although the next least cost is 8, we cannot allocate to cells (O1, D2) and (O2, D2) because we have exhausted the demand 25 for this column.

So we allocate 15 to cell (O1, D1)

  D1 D2 D3 (ai)
O1 (15)9 8 (10)5 25/15/0
O2 6 8 (35)4 35/0
O3 (15)7 (25)6 9 40/15/0
(bj) 30/15/0 25/0 45/10/0  

Transportation schedule:

O1 → D1

O1 → D3

O2 → D3

O3 → D1

O3 → D2

i.e x11 = 15

x13 = 10

x23 = 35

x31 = 15

x32 = 25

Total cost is = (15 × 9) + (10 × 5) + (35 × 4) + (15 × 7) + (25 × 6)

= 135 + 50 + 140 + 105 + 150

= 580

Thus by the least cost method (LCM), the cost is ₹ 580.

shaalaa.com
Transportation Problem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Operations Research - Exercise 10.1 [पृष्ठ २५०]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 10 Operations Research
Exercise 10.1 | Q 7 | पृष्ठ २५०

संबंधित प्रश्‍न

What is feasible solution and non degenerate solution in transportation problem?


Find an initial basic feasible solution of the following problem using the northwest corner rule.

  D1 D2 D3 D4 Supply
O1 5 3 6 2 19
O2 4 7 9 1 37
O3 3 4 7 5 34
Demand 16 18 31 25  

Determine an initial basic feasible solution of the following transportation problem by north west corner method.

  Bangalore Nasik Bhopal Delhi Capacity
Chennai 6 8 8 5 30
Madurai 5 11 9 7 40
Trickly 8 9 7 13 50
Demand
(Units/day)
35 28 32 25  

Find the initial basic feasible solution of the following transportation problem:

  I II III Demand
A 1 2 6 7
B 0 4 2 12
C 3 1 5 11
Supply 10 10 10  

Using North West Corner rule


Obtain an initial basic feasible solution to the following transportation problem by north west corner method.

  D E F C Available
A 11 13 17 14 250
B 16 18 14 10 300
C 21 24 13 10 400
Required 200 225 275 250  

Choose the correct alternative:

In a degenerate solution number of allocations is


Choose the correct alternative:

In an assignment problem the value of decision variable xij is ______


Consider the following transportation problem

  Destination Availability
  D1 D2 D3 D4  
O1 5 8 3 6 30
O2 4 5 7 4 50
O3 6 2 4 6 20
Requirement 30 40 20 10  

Determine an initial basic feasible solution using Vogel’s approximation method


Determine an initial basic feasible solution to the following transportation problem by using least cost method

    Destination Supply
    D1 D2 D3  
  S1 9 8 5 25
Source S2 6 8 4 35
  S3 7 6 9 40
  Requirement 30 25 45  

Explain Vogel’s approximation method by obtaining initial basic feasible solution of the following transportation problem.

    Destination  
    D1 D2 D3 D4 Supply
  O1 2 3 11 7 6
Origin O2 1 0 6 1 1
  O3 5 8 15 9 10
  Demand 7 5 3 2  

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×