Advertisements
Advertisements
प्रश्न
Determine an initial basic feasible solution to the following transportation problem by using least cost method
Destination | Supply | ||||
D1 | D2 | D3 | |||
S1 | 9 | 8 | 5 | 25 | |
Source | S2 | 6 | 8 | 4 | 35 |
S3 | 7 | 6 | 9 | 40 | |
Requirement | 30 | 25 | 45 |
उत्तर
Total supply = 25 + 35 + 40 = 100 = `sum"a"_"i"`
Total requirement = 30 + 25 + 45 = 100 = `sum"b"_"j"`
Since `sum"a"_"i" = sum"b"_"j"`
The given transportation problem is balanced and we can find an initial basic feasible solution.
Least cost method (LCM)
First allocation:
D1 | D2 | D3 | (ai) | |
S1 | 9 | 8 | 5 | 25 |
S2 | 6 | 8 | (35)4 | 35/0 |
S3 | 7 | 6 | 9 | 40 |
(bj) | 30 | 25 | 45/10 |
Second allocation:
D1 | D2 | D3 | (ai) | |
S1 | 9 | 8 | (10)5 | 25/15 |
S3 | 7 | 6 | 9 | 40 |
(bj) | 30 | 25 | 10/0 |
Third allocation:
D1 | D2 | (ai) | |
S1 | 9 | 8 | 15 |
S3 | 7 | (25)6 | 40/15 |
(bj) | 30 | 25/0 |
Fourth allocation:
D1 | (ai) | |
S1 | (15)9 | 15/0 |
S3 | (15)7 | 15/0 |
(bj) | 30/15/0 |
We first allow 15 units to cell (S3, D1) since it has the least cost.
Then we allow the balance 15 units to cell (S1, D1).
The final allotment is given as follows.
D1 | D2 | D3 | Supply | |
S1 | (15)9 | 8 | (10)5 | 25 |
S2 | 6 | 8 | (35)4 | 35 |
S3 | (15)7 | (25)6 | 9 | 40 |
Requirement | 30 | 25 | 45 |
Transportation schedule:
S1 → D1
S1 → D3
S2 → D3
S3 → D1
S3 → D2
i.e x11 = 15
x13 = 10
x23 = 35
x31 = 15
x32 = 25
Total cost is = (15 × 9) + (10 × 5) + (35 × 4) + (15 × 7) + (25 × 6)
= 136 + 50 + 140 + 105 + 150
= 580
The optimal cost by LCM is ₹ 580.
APPEARS IN
संबंधित प्रश्न
Write mathematical form of transportation problem
What is feasible solution and non degenerate solution in transportation problem?
Find an initial basic feasible solution of the following problem using the northwest corner rule.
D1 | D2 | D3 | D4 | Supply | |
O1 | 5 | 3 | 6 | 2 | 19 |
O2 | 4 | 7 | 9 | 1 | 37 |
O3 | 3 | 4 | 7 | 5 | 34 |
Demand | 16 | 18 | 31 | 25 |
Consider the following transportation problem.
D1 | D2 | D3 | D4 | Availability | |
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine initial basic feasible solution by VAM.
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using North West Corner rule
Obtain an initial basic feasible solution to the following transportation problem by north west corner method.
D | E | F | C | Available | |
A | 11 | 13 | 17 | 14 | 250 |
B | 16 | 18 | 14 | 10 | 300 |
C | 21 | 24 | 13 | 10 | 400 |
Required | 200 | 225 | 275 | 250 |
Choose the correct alternative:
In a non – degenerate solution number of allocation is
The following table summarizes the supply, demand and cost information for four factors S1, S2, S3, S4 Shipping goods to three warehouses D1, D2, D3.
D1 | D2 | D3 | Supply | |
S1 | 2 | 7 | 14 | 5 |
S2 | 3 | 3 | 1 | 8 |
S3 | 5 | 4 | 7 | 7 |
S4 | 1 | 6 | 2 | 14 |
Demand | 7 | 9 | 18 |
Find an initial solution by using north west corner rule. What is the total cost for this solution?
Consider the following transportation problem
Destination | Availability | ||||
D1 | D2 | D3 | D4 | ||
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine an initial basic feasible solution using Vogel’s approximation method
Explain Vogel’s approximation method by obtaining initial basic feasible solution of the following transportation problem.
Destination | ||||||
D1 | D2 | D3 | D4 | Supply | ||
O1 | 2 | 3 | 11 | 7 | 6 | |
Origin | O2 | 1 | 0 | 6 | 1 | 1 |
O3 | 5 | 8 | 15 | 9 | 10 | |
Demand | 7 | 5 | 3 | 2 |