मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

Determine an initial basic feasible solution to the following transportation problem by using least cost method Destination Supply D1 D2 D3 S1 9 8 5 25 Source S2 6 8 4 35 S3 7 6 9 40 Requirement - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Determine an initial basic feasible solution to the following transportation problem by using least cost method

    Destination Supply
    D1 D2 D3  
  S1 9 8 5 25
Source S2 6 8 4 35
  S3 7 6 9 40
  Requirement 30 25 45  
तक्ता
बेरीज

उत्तर

Total supply = 25 + 35 + 40 = 100 = `sum"a"_"i"`

Total requirement = 30 + 25 + 45 = 100 = `sum"b"_"j"`

Since `sum"a"_"i" = sum"b"_"j"` 

The given transportation problem is balanced and we can find an initial basic feasible solution.

Least cost method (LCM)

First allocation:

  D1 D2 D3 (ai)
S1 9 8 5 25
S2 6 8 (35)4 35/0
S3 7 6 9 40
(bj) 30 25 45/10  

Second allocation:

  D1 D2 D3 (ai)
S1 9 8 (10)5 25/15
S3 7 6 9 40
(bj) 30 25 10/0  

Third allocation:

  D1 D2 (ai)
S1 9 8 15
S3 7 (25)6 40/15
(bj) 30 25/0  

Fourth allocation:

  D1 (ai)
S1 (15)9 15/0
S3 (15)7 15/0
(bj) 30/15/0  

We first allow 15 units to cell (S3, D1) since it has the least cost.

Then we allow the balance 15 units to cell (S1, D1).

The final allotment is given as follows.

  D1 D2 D3 Supply
S1 (15)9 8 (10)5 25
S2 6 8 (35)4 35
S3 (15)7 (25)6 9 40
Requirement 30 25 45  

Transportation schedule:

S1 → D1

S1 → D3

S2 → D3

S3 → D1

S3 → D2

i.e x11 = 15

x13 = 10

x23 = 35

x31 = 15

x32 = 25

Total cost is = (15 × 9) + (10 × 5) + (35 × 4) + (15 × 7) + (25 × 6)

= 136 + 50 + 140 + 105 + 150

= 580

The optimal cost by LCM is ₹ 580.

shaalaa.com
Transportation Problem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Operations Research - Miscellaneous problems [पृष्ठ २६२]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 10 Operations Research
Miscellaneous problems | Q 3. (ii) | पृष्ठ २६२

संबंधित प्रश्‍न

Write mathematical form of transportation problem


What is feasible solution and non degenerate solution in transportation problem?


Find an initial basic feasible solution of the following problem using the northwest corner rule.

  D1 D2 D3 D4 Supply
O1 5 3 6 2 19
O2 4 7 9 1 37
O3 3 4 7 5 34
Demand 16 18 31 25  

Consider the following transportation problem.

  D1 D2 D3 D4 Availability
O1 5 8 3 6 30
O2 4 5 7 4 50
O3 6 2 4 6 20
Requirement 30 40 20 10  

Determine initial basic feasible solution by VAM.


Find the initial basic feasible solution of the following transportation problem:

  I II III Demand
A 1 2 6 7
B 0 4 2 12
C 3 1 5 11
Supply 10 10 10  

Using North West Corner rule


Obtain an initial basic feasible solution to the following transportation problem by north west corner method.

  D E F C Available
A 11 13 17 14 250
B 16 18 14 10 300
C 21 24 13 10 400
Required 200 225 275 250  

Choose the correct alternative:

In a non – degenerate solution number of allocation is


The following table summarizes the supply, demand and cost information for four factors S1, S2, S3, S4 Shipping goods to three warehouses D1, D2, D3.

  D1 D2 D3 Supply
S1 2 7 14 5
S2 3 3 1 8
S3 5 4 7 7
S4 1 6 2 14
Demand 7 9 18  

Find an initial solution by using north west corner rule. What is the total cost for this solution?


Consider the following transportation problem

  Destination Availability
  D1 D2 D3 D4  
O1 5 8 3 6 30
O2 4 5 7 4 50
O3 6 2 4 6 20
Requirement 30 40 20 10  

Determine an initial basic feasible solution using Vogel’s approximation method


Explain Vogel’s approximation method by obtaining initial basic feasible solution of the following transportation problem.

    Destination  
    D1 D2 D3 D4 Supply
  O1 2 3 11 7 6
Origin O2 1 0 6 1 1
  O3 5 8 15 9 10
  Demand 7 5 3 2  

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×