Advertisements
Advertisements
प्रश्न
Consider the following transportation problem.
D1 | D2 | D3 | D4 | Availability | |
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine initial basic feasible solution by VAM.
उत्तर
Let ‘ai‘ denote the availability and ’bj‘ denote the requirement
`sum"a"_"i"` = 30 + 50 + 20 = 100 and `sum"b"_"j"` = 30 + 40 + 20 + 10 = 100
`sum"a"_"i" = sum"b"_"j"`
So the given problem is a balanced transportation problem.
Hence there exists a feasible solution to the given problem.
For VAM, we first find the penalties for rows and columns.
We allocate units to the maximum penalty column (or) row with the least cost.
First allocation:
D1 | D2 | D3 | D4 | (ai) | Penalty | |
O1 | 5 | 8 | 3 | 6 | 30 | (2) |
O2 | 4 | 5 | 7 | 4 | 50 | (1) |
O3 | 6 | (20)2 | 4 | 6 | 20/0 | (2) |
(bj) | 30 | 40/20 | 20 | 10 | ||
Penalty | (1) | (3) | (1) | (2) |
Largest penalty = 3. allocate min (40, 20) to (O3, D2)
Second allocation:
D1 | D2 | D3 | D4 | (ai) | Penalty | |
O1 | 5 | 8 | (20)3 | 6 | 30/10 | (2) |
O2 | 4 | 5 | 7 | 4 | 50 | (1) |
(bj) | 30 | 20 | 20/0 | 10 | ||
Penalty | (1) | (3) | (4) | (2) |
Largest penalty = 4.
Allocate min (20, 30) to (O1, D3)
Third allocation:
D1 | D2 | D4 | (ai) | Penalty | |
O1 | 5 | 8 | 6 | 10 | (1) |
O2 | 4 | (20)5 | 4 | 50/30 | (1) |
(bj) | 30 | 20/0 | 10 | ||
Penalty | (1) | (3) | (2) |
The largest penalty is 3.
Allocate min (20, 50) to (O2, D2)
Fourth allocation:
D1 | D4 | (ai) | Penalty | |
O1 | 5 | 6 | 10 | (1) |
O2 | 4 | (10)4 | 30/20 | (0) |
(bj) | 30 | 10/10 | ||
Penalty | (1) | (2) |
The largest penalty is 2.
Allocate min (10, 30) to (O2, D4)
Fifth allocation:
D1 | (ai) | Penalty | |
O1 | (10)5 | 10/0 | – |
O2 | (20)4 | 20/0 | – |
(bj) | 30/10/0 | ||
Penalty | (1) |
The largest penalty is 1.
Allocate min (30, 20) to (O2, D1)
Balance 10 units we allot to (O1, D1).
Thus we have the following allocations:
D1 | D2 | D3 | D4 | (ai) | |
O1 | (10)5 | 8 | (20)3 | 6 | 30 |
O2 | (20)4 | (20)5 | 7 | (10)4 | 50 |
O3 | 6 | (20)2 | 4 | 6 | 20 |
(bj) | 30 | 40 | 20 | 10 |
Transportation schedule:
O1 → D1
O1 → D3
O2 → D1
O2 → D2
O2 → D4
O3 → P2
i.e x11 = 10
x13 = 20
x21 = 20
x22 = 20
x24 = 10
x32 = 20
Total cost = (10 × 5) + (20 × 3) + (20 × 4) + (20 × 5) + (10 × 4) + (20 × 2)
= 50 + 60 + 80 + 100 + 40 + 40
= 370
Thus the least cost by YAM is ₹ 370.
APPEARS IN
संबंधित प्रश्न
Obtain an initial basic feasible solution to the following transportation problem by using least-cost method.
D1 | D2 | D3 | Supply | |
O1 | 9 | 8 | 5 | 25 |
O2 | 6 | 8 | 4 | 35 |
O3 | 7 | 6 | 9 | 40 |
Demand | 30 | 25 | 45 |
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using Least Cost method
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using Vogel’s approximation method
Obtain an initial basic feasible solution to the following transportation problem by north west corner method.
D | E | F | C | Available | |
A | 11 | 13 | 17 | 14 | 250 |
B | 16 | 18 | 14 | 10 | 300 |
C | 21 | 24 | 13 | 10 | 400 |
Required | 200 | 225 | 275 | 250 |
Choose the correct alternative:
In a non – degenerate solution number of allocation is
Choose the correct alternative:
The Penalty in VAM represents difference between the first ______
Choose the correct alternative:
In an assignment problem the value of decision variable xij is ______
Consider the following transportation problem
Detination | Availabiity | ||||
D1 | D2 | D3 | D4 | ||
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine an initial basic feasible solution using Least cost method
Determine an initial basic feasible solution to the following transportation problem by using least cost method
Destination | Supply | ||||
D1 | D2 | D3 | |||
S1 | 9 | 8 | 5 | 25 | |
Source | S2 | 6 | 8 | 4 | 35 |
S3 | 7 | 6 | 9 | 40 | |
Requirement | 30 | 25 | 45 |
Explain Vogel’s approximation method by obtaining initial basic feasible solution of the following transportation problem.
Destination | ||||||
D1 | D2 | D3 | D4 | Supply | ||
O1 | 2 | 3 | 11 | 7 | 6 | |
Origin | O2 | 1 | 0 | 6 | 1 | 1 |
O3 | 5 | 8 | 15 | 9 | 10 | |
Demand | 7 | 5 | 3 | 2 |