Advertisements
Advertisements
प्रश्न
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using Least Cost method
उत्तर
Total demand (ai) = 7 + 12 + 11 = 30 and total supply (bj) = 10 + 10 + 10 = 30.
`sum"a"_"i" = sum"b"_"j"` ⇒ the problem is a balanced transportation problem and we can find a basic feasible solution.
Least Cost method
First allocation:
I | II | III | (ai) | |
A | 1 | 2 | 6 | 7 |
B | (10)0 | 4 | 2 | 12/2 |
C | 3 | 1 | 5 | 11 |
(bj) | 10/0 | 10 | 1 |
Second allocation:
II | III | (ai) | |
A | 2 | 6 | 7 |
B | 4 | 2 | 2 |
C | (10)1 | 5 | 11/1 |
(bj) | 10/0 | 10 |
Third allocation:
III | (ai) | |
A | 6 | 7 |
B | (2)2 | 2/0 |
C | 5 | 1 |
(bj) | 10/8 |
Fourth allocation:
III | (ai) | |
A | (7)6 | 7/0 |
C | (1)5 | 1/0 |
(bj) | 8/7/0 |
We first allot 1 unit to cell (C, III) and the balance 7 units to cell (A, III).
Thus we have the following allocations:
I | II | III | Demand | |
A | 1 | 2 | (7)6 | 7 |
B | (10)0 | 4 | (2)2 | 12 |
C | 3 | (10)1 | (1)5 | 11 |
Supply | 10 | 10 | 10 |
Transportation schedule:
A → III
B → I
B → III
C → II
C → III
i.e x13 = 7
x21 = 10
x23 = 2
x32 = 10
x33 = 1
Total cost = (7 × 6) + (10 × 0) + (2 × 2) + (10 × 1) + (1 × 5)
= 42 + 0 + 4 + 10 + 5
= ₹ 61
APPEARS IN
संबंधित प्रश्न
What is transportation problem?
What is feasible solution and non degenerate solution in transportation problem?
What do you mean by balanced transportation problem?
Determine an initial basic feasible solution of the following transportation problem by north west corner method.
Bangalore | Nasik | Bhopal | Delhi | Capacity | |
Chennai | 6 | 8 | 8 | 5 | 30 |
Madurai | 5 | 11 | 9 | 7 | 40 |
Trickly | 8 | 9 | 7 | 13 | 50 |
Demand (Units/day) |
35 | 28 | 32 | 25 |
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using Vogel’s approximation method
Obtain an initial basic feasible solution to the following transportation problem by north west corner method.
D | E | F | C | Available | |
A | 11 | 13 | 17 | 14 | 250 |
B | 16 | 18 | 14 | 10 | 300 |
C | 21 | 24 | 13 | 10 | 400 |
Required | 200 | 225 | 275 | 250 |
Choose the correct alternative:
The transportation problem is said to be unbalanced if ______
Choose the correct alternative:
The Penalty in VAM represents difference between the first ______
Choose the correct alternative:
Solution for transportation problem using ______ method is nearer to an optimal solution.
Determine an initial basic feasible solution to the following transportation problem by using least cost method
Destination | Supply | ||||
D1 | D2 | D3 | |||
S1 | 9 | 8 | 5 | 25 | |
Source | S2 | 6 | 8 | 4 | 35 |
S3 | 7 | 6 | 9 | 40 | |
Requirement | 30 | 25 | 45 |