Advertisements
Advertisements
Question
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using Least Cost method
Solution
Total demand (ai) = 7 + 12 + 11 = 30 and total supply (bj) = 10 + 10 + 10 = 30.
`sum"a"_"i" = sum"b"_"j"` ⇒ the problem is a balanced transportation problem and we can find a basic feasible solution.
Least Cost method
First allocation:
I | II | III | (ai) | |
A | 1 | 2 | 6 | 7 |
B | (10)0 | 4 | 2 | 12/2 |
C | 3 | 1 | 5 | 11 |
(bj) | 10/0 | 10 | 1 |
Second allocation:
II | III | (ai) | |
A | 2 | 6 | 7 |
B | 4 | 2 | 2 |
C | (10)1 | 5 | 11/1 |
(bj) | 10/0 | 10 |
Third allocation:
III | (ai) | |
A | 6 | 7 |
B | (2)2 | 2/0 |
C | 5 | 1 |
(bj) | 10/8 |
Fourth allocation:
III | (ai) | |
A | (7)6 | 7/0 |
C | (1)5 | 1/0 |
(bj) | 8/7/0 |
We first allot 1 unit to cell (C, III) and the balance 7 units to cell (A, III).
Thus we have the following allocations:
I | II | III | Demand | |
A | 1 | 2 | (7)6 | 7 |
B | (10)0 | 4 | (2)2 | 12 |
C | 3 | (10)1 | (1)5 | 11 |
Supply | 10 | 10 | 10 |
Transportation schedule:
A → III
B → I
B → III
C → II
C → III
i.e x13 = 7
x21 = 10
x23 = 2
x32 = 10
x33 = 1
Total cost = (7 × 6) + (10 × 0) + (2 × 2) + (10 × 1) + (1 × 5)
= 42 + 0 + 4 + 10 + 5
= ₹ 61
APPEARS IN
RELATED QUESTIONS
What is transportation problem?
Explain Vogel’s approximation method by obtaining initial feasible solution of the following transportation problem.
D1 | D2 | D3 | D4 | Supply | |
O1 | 2 | 3 | 11 | 7 | 6 |
O2 | 1 | 0 | 6 | 1 | 1 |
O3 | 5 | 8 | 15 | 9 | 10 |
Demand | 7 | 5 | 3 | 2 |
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using Vogel’s approximation method
Obtain an initial basic feasible solution to the following transportation problem by north west corner method.
D | E | F | C | Available | |
A | 11 | 13 | 17 | 14 | 250 |
B | 16 | 18 | 14 | 10 | 300 |
C | 21 | 24 | 13 | 10 | 400 |
Required | 200 | 225 | 275 | 250 |
Choose the correct alternative:
In a non – degenerate solution number of allocation is
Choose the correct alternative:
In a degenerate solution number of allocations is
Choose the correct alternative:
The Penalty in VAM represents difference between the first ______
Choose the correct alternative:
Solution for transportation problem using ______ method is nearer to an optimal solution.
The following table summarizes the supply, demand and cost information for four factors S1, S2, S3, S4 Shipping goods to three warehouses D1, D2, D3.
D1 | D2 | D3 | Supply | |
S1 | 2 | 7 | 14 | 5 |
S2 | 3 | 3 | 1 | 8 |
S3 | 5 | 4 | 7 | 7 |
S4 | 1 | 6 | 2 | 14 |
Demand | 7 | 9 | 18 |
Find an initial solution by using north west corner rule. What is the total cost for this solution?
Determine an initial basic feasible solution to the following transportation problem by using least cost method
Destination | Supply | ||||
D1 | D2 | D3 | |||
S1 | 9 | 8 | 5 | 25 | |
Source | S2 | 6 | 8 | 4 | 35 |
S3 | 7 | 6 | 9 | 40 | |
Requirement | 30 | 25 | 45 |