Advertisements
Advertisements
Question
Determine an initial basic feasible solution to the following transportation problem by using least cost method
Destination | Supply | ||||
D1 | D2 | D3 | |||
S1 | 9 | 8 | 5 | 25 | |
Source | S2 | 6 | 8 | 4 | 35 |
S3 | 7 | 6 | 9 | 40 | |
Requirement | 30 | 25 | 45 |
Solution
Total supply = 25 + 35 + 40 = 100 = `sum"a"_"i"`
Total requirement = 30 + 25 + 45 = 100 = `sum"b"_"j"`
Since `sum"a"_"i" = sum"b"_"j"`
The given transportation problem is balanced and we can find an initial basic feasible solution.
Least cost method (LCM)
First allocation:
D1 | D2 | D3 | (ai) | |
S1 | 9 | 8 | 5 | 25 |
S2 | 6 | 8 | (35)4 | 35/0 |
S3 | 7 | 6 | 9 | 40 |
(bj) | 30 | 25 | 45/10 |
Second allocation:
D1 | D2 | D3 | (ai) | |
S1 | 9 | 8 | (10)5 | 25/15 |
S3 | 7 | 6 | 9 | 40 |
(bj) | 30 | 25 | 10/0 |
Third allocation:
D1 | D2 | (ai) | |
S1 | 9 | 8 | 15 |
S3 | 7 | (25)6 | 40/15 |
(bj) | 30 | 25/0 |
Fourth allocation:
D1 | (ai) | |
S1 | (15)9 | 15/0 |
S3 | (15)7 | 15/0 |
(bj) | 30/15/0 |
We first allow 15 units to cell (S3, D1) since it has the least cost.
Then we allow the balance 15 units to cell (S1, D1).
The final allotment is given as follows.
D1 | D2 | D3 | Supply | |
S1 | (15)9 | 8 | (10)5 | 25 |
S2 | 6 | 8 | (35)4 | 35 |
S3 | (15)7 | (25)6 | 9 | 40 |
Requirement | 30 | 25 | 45 |
Transportation schedule:
S1 → D1
S1 → D3
S2 → D3
S3 → D1
S3 → D2
i.e x11 = 15
x13 = 10
x23 = 35
x31 = 15
x32 = 25
Total cost is = (15 × 9) + (10 × 5) + (35 × 4) + (15 × 7) + (25 × 6)
= 136 + 50 + 140 + 105 + 150
= 580
The optimal cost by LCM is ₹ 580.
APPEARS IN
RELATED QUESTIONS
Determine an initial basic feasible solution of the following transportation problem by north west corner method.
Bangalore | Nasik | Bhopal | Delhi | Capacity | |
Chennai | 6 | 8 | 8 | 5 | 30 |
Madurai | 5 | 11 | 9 | 7 | 40 |
Trickly | 8 | 9 | 7 | 13 | 50 |
Demand (Units/day) |
35 | 28 | 32 | 25 |
Obtain an initial basic feasible solution to the following transportation problem by using least-cost method.
D1 | D2 | D3 | Supply | |
O1 | 9 | 8 | 5 | 25 |
O2 | 6 | 8 | 4 | 35 |
O3 | 7 | 6 | 9 | 40 |
Demand | 30 | 25 | 45 |
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using Vogel’s approximation method
Obtain an initial basic feasible solution to the following transportation problem by north west corner method.
D | E | F | C | Available | |
A | 11 | 13 | 17 | 14 | 250 |
B | 16 | 18 | 14 | 10 | 300 |
C | 21 | 24 | 13 | 10 | 400 |
Required | 200 | 225 | 275 | 250 |
Choose the correct alternative:
The transportation problem is said to be unbalanced if ______
Choose the correct alternative:
In a degenerate solution number of allocations is
Choose the correct alternative:
The Penalty in VAM represents difference between the first ______
Choose the correct alternative:
Solution for transportation problem using ______ method is nearer to an optimal solution.
Choose the correct alternative:
In an assignment problem the value of decision variable xij is ______
The following table summarizes the supply, demand and cost information for four factors S1, S2, S3, S4 Shipping goods to three warehouses D1, D2, D3.
D1 | D2 | D3 | Supply | |
S1 | 2 | 7 | 14 | 5 |
S2 | 3 | 3 | 1 | 8 |
S3 | 5 | 4 | 7 | 7 |
S4 | 1 | 6 | 2 | 14 |
Demand | 7 | 9 | 18 |
Find an initial solution by using north west corner rule. What is the total cost for this solution?