Advertisements
Advertisements
Question
Consider the following transportation problem.
D1 | D2 | D3 | D4 | Availability | |
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine initial basic feasible solution by VAM.
Solution
Let ‘ai‘ denote the availability and ’bj‘ denote the requirement
`sum"a"_"i"` = 30 + 50 + 20 = 100 and `sum"b"_"j"` = 30 + 40 + 20 + 10 = 100
`sum"a"_"i" = sum"b"_"j"`
So the given problem is a balanced transportation problem.
Hence there exists a feasible solution to the given problem.
For VAM, we first find the penalties for rows and columns.
We allocate units to the maximum penalty column (or) row with the least cost.
First allocation:
D1 | D2 | D3 | D4 | (ai) | Penalty | |
O1 | 5 | 8 | 3 | 6 | 30 | (2) |
O2 | 4 | 5 | 7 | 4 | 50 | (1) |
O3 | 6 | (20)2 | 4 | 6 | 20/0 | (2) |
(bj) | 30 | 40/20 | 20 | 10 | ||
Penalty | (1) | (3) | (1) | (2) |
Largest penalty = 3. allocate min (40, 20) to (O3, D2)
Second allocation:
D1 | D2 | D3 | D4 | (ai) | Penalty | |
O1 | 5 | 8 | (20)3 | 6 | 30/10 | (2) |
O2 | 4 | 5 | 7 | 4 | 50 | (1) |
(bj) | 30 | 20 | 20/0 | 10 | ||
Penalty | (1) | (3) | (4) | (2) |
Largest penalty = 4.
Allocate min (20, 30) to (O1, D3)
Third allocation:
D1 | D2 | D4 | (ai) | Penalty | |
O1 | 5 | 8 | 6 | 10 | (1) |
O2 | 4 | (20)5 | 4 | 50/30 | (1) |
(bj) | 30 | 20/0 | 10 | ||
Penalty | (1) | (3) | (2) |
The largest penalty is 3.
Allocate min (20, 50) to (O2, D2)
Fourth allocation:
D1 | D4 | (ai) | Penalty | |
O1 | 5 | 6 | 10 | (1) |
O2 | 4 | (10)4 | 30/20 | (0) |
(bj) | 30 | 10/10 | ||
Penalty | (1) | (2) |
The largest penalty is 2.
Allocate min (10, 30) to (O2, D4)
Fifth allocation:
D1 | (ai) | Penalty | |
O1 | (10)5 | 10/0 | – |
O2 | (20)4 | 20/0 | – |
(bj) | 30/10/0 | ||
Penalty | (1) |
The largest penalty is 1.
Allocate min (30, 20) to (O2, D1)
Balance 10 units we allot to (O1, D1).
Thus we have the following allocations:
D1 | D2 | D3 | D4 | (ai) | |
O1 | (10)5 | 8 | (20)3 | 6 | 30 |
O2 | (20)4 | (20)5 | 7 | (10)4 | 50 |
O3 | 6 | (20)2 | 4 | 6 | 20 |
(bj) | 30 | 40 | 20 | 10 |
Transportation schedule:
O1 → D1
O1 → D3
O2 → D1
O2 → D2
O2 → D4
O3 → P2
i.e x11 = 10
x13 = 20
x21 = 20
x22 = 20
x24 = 10
x32 = 20
Total cost = (10 × 5) + (20 × 3) + (20 × 4) + (20 × 5) + (10 × 4) + (20 × 2)
= 50 + 60 + 80 + 100 + 40 + 40
= 370
Thus the least cost by YAM is ₹ 370.
APPEARS IN
RELATED QUESTIONS
What is transportation problem?
What do you mean by balanced transportation problem?
Obtain an initial basic feasible solution to the following transportation problem by using least-cost method.
D1 | D2 | D3 | Supply | |
O1 | 9 | 8 | 5 | 25 |
O2 | 6 | 8 | 4 | 35 |
O3 | 7 | 6 | 9 | 40 |
Demand | 30 | 25 | 45 |
Explain Vogel’s approximation method by obtaining initial feasible solution of the following transportation problem.
D1 | D2 | D3 | D4 | Supply | |
O1 | 2 | 3 | 11 | 7 | 6 |
O2 | 1 | 0 | 6 | 1 | 1 |
O3 | 5 | 8 | 15 | 9 | 10 |
Demand | 7 | 5 | 3 | 2 |
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using North West Corner rule
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using Least Cost method
Obtain an initial basic feasible solution to the following transportation problem by north west corner method.
D | E | F | C | Available | |
A | 11 | 13 | 17 | 14 | 250 |
B | 16 | 18 | 14 | 10 | 300 |
C | 21 | 24 | 13 | 10 | 400 |
Required | 200 | 225 | 275 | 250 |
Choose the correct alternative:
Solution for transportation problem using ______ method is nearer to an optimal solution.
Consider the following transportation problem
Detination | Availabiity | ||||
D1 | D2 | D3 | D4 | ||
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine an initial basic feasible solution using Least cost method
Consider the following transportation problem
Destination | Availability | ||||
D1 | D2 | D3 | D4 | ||
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine an initial basic feasible solution using Vogel’s approximation method