मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

Explain Vogel’s approximation method by obtaining initial basic feasible solution of the following transportation problem. Destination D1 D2 D3 D4 Supply O1 2 3 11 7 6 Origin O2 1 0 6 1 1 O3 5 8 15 - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Explain Vogel’s approximation method by obtaining initial basic feasible solution of the following transportation problem.

    Destination  
    D1 D2 D3 D4 Supply
  O1 2 3 11 7 6
Origin O2 1 0 6 1 1
  O3 5 8 15 9 10
  Demand 7 5 3 2  
तक्ता
बेरीज

उत्तर

Total supply (ai) = 6 + 1 + 10 = 17

Total demand (bj) = 7 + 5 + 3 + 2 = 17

`sum"a"_"i" = sum"b"_"j"`.

So given transportation problem is a balanced problem and hence we can find a basic feasible solution by VAM.

First allocation:

  D1 D2 D3 D4 (ai) penalty
O1 2 3 11 7 6 (1)
O2 1 0 6 (1)1 1/0 (1)
O3 5 8 15 9 10 (3)
(bj) 7 5 3 2/1    
penalty (1) (3) (5) (6)    

The largest penalty is 6.

So allot min (2, 1) to the cell (O2, D4) which has the least cost in column D4.

Second allocation:

  D1 D2 D3 D4 (ai) penalty
O1 2 (5)3 11 7 6/1 (1)
O3 5 8 15 9 10 (3)
(bj) 7 5/0 3 1    
penalty (3) (5) (4) (2)    

The largest penalty is 5.

So allot min (5, 6) to the cell (O1, D2) which has the least cost in column D2.

Third allocation:

  D1 D3 D4 (ai) penalty
O1 (1)2 11 7 1/0 (5)
O3 5 15 9 10 (4)
(bj) 7/6 3 1    
penalty (3) (4) (2)    

The largest penalty is 5.

So allot min (7, 1) to the cell (O1, D1) which has the least cost in row O1.

Fourth allocation:

  D1 D3 D4 (ai) penalty
O3 (6)5 15 9 10/4 (4)
(bj) 6/0 3 1    
penalty    

Fifth allocation:

  D3 D4 (ai) penalty
O3 (3)15 (1)9 4/3/0 (6)
(bj) 3/0 1/0    
penalty    

The largest penalty is 6.

So allot min (1, 4) to the cell (O3, D4) which has the least cost in row O3.

The balance 3 units is allotted to the cell (O3, D3).

We get the final allocation as given below.

  D1 D2 D3 D4 Supply
O1 (1)2 (5)3 11 7 6
O2 1 0 6 (1)1 1
O3 (6)5 8 (3)15 (1)9 10
Demand 7 5 3 2  

Transportation schedule:

O1 → D1

O1 → D2

O2 → D4

O3 → D1

O3 → D3

O3 → D4

i.e x11 = 1

x12 = 5

x24 = 1

x31 = 6

x33 = 3

x34 = 1

Total cost is given by = (1 × 2) + (5 × 3) + (1 × 1) + (6 × 5) + (3 × 15) + (1 × 9)

= 2 + 15 + 1 + 30 + 45 + 9

= 102

Thus the optimal (minimal) cost of the given transportation problem by Vogel’s approximation method is ₹ 102.

shaalaa.com
Transportation Problem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Operations Research - Miscellaneous problems [पृष्ठ २६२]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 10 Operations Research
Miscellaneous problems | Q 4 | पृष्ठ २६२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×