Advertisements
Advertisements
प्रश्न
Explain Vogel’s approximation method by obtaining initial basic feasible solution of the following transportation problem.
Destination | ||||||
D1 | D2 | D3 | D4 | Supply | ||
O1 | 2 | 3 | 11 | 7 | 6 | |
Origin | O2 | 1 | 0 | 6 | 1 | 1 |
O3 | 5 | 8 | 15 | 9 | 10 | |
Demand | 7 | 5 | 3 | 2 |
उत्तर
Total supply (ai) = 6 + 1 + 10 = 17
Total demand (bj) = 7 + 5 + 3 + 2 = 17
`sum"a"_"i" = sum"b"_"j"`.
So given transportation problem is a balanced problem and hence we can find a basic feasible solution by VAM.
First allocation:
D1 | D2 | D3 | D4 | (ai) | penalty | |
O1 | 2 | 3 | 11 | 7 | 6 | (1) |
O2 | 1 | 0 | 6 | (1)1 | 1/0 | (1) |
O3 | 5 | 8 | 15 | 9 | 10 | (3) |
(bj) | 7 | 5 | 3 | 2/1 | ||
penalty | (1) | (3) | (5) | (6) |
The largest penalty is 6.
So allot min (2, 1) to the cell (O2, D4) which has the least cost in column D4.
Second allocation:
D1 | D2 | D3 | D4 | (ai) | penalty | |
O1 | 2 | (5)3 | 11 | 7 | 6/1 | (1) |
O3 | 5 | 8 | 15 | 9 | 10 | (3) |
(bj) | 7 | 5/0 | 3 | 1 | ||
penalty | (3) | (5) | (4) | (2) |
The largest penalty is 5.
So allot min (5, 6) to the cell (O1, D2) which has the least cost in column D2.
Third allocation:
D1 | D3 | D4 | (ai) | penalty | |
O1 | (1)2 | 11 | 7 | 1/0 | (5) |
O3 | 5 | 15 | 9 | 10 | (4) |
(bj) | 7/6 | 3 | 1 | ||
penalty | (3) | (4) | (2) |
The largest penalty is 5.
So allot min (7, 1) to the cell (O1, D1) which has the least cost in row O1.
Fourth allocation:
D1 | D3 | D4 | (ai) | penalty | |
O3 | (6)5 | 15 | 9 | 10/4 | (4) |
(bj) | 6/0 | 3 | 1 | ||
penalty | – | – | – |
Fifth allocation:
D3 | D4 | (ai) | penalty | |
O3 | (3)15 | (1)9 | 4/3/0 | (6) |
(bj) | 3/0 | 1/0 | ||
penalty | – | – |
The largest penalty is 6.
So allot min (1, 4) to the cell (O3, D4) which has the least cost in row O3.
The balance 3 units is allotted to the cell (O3, D3).
We get the final allocation as given below.
D1 | D2 | D3 | D4 | Supply | |
O1 | (1)2 | (5)3 | 11 | 7 | 6 |
O2 | 1 | 0 | 6 | (1)1 | 1 |
O3 | (6)5 | 8 | (3)15 | (1)9 | 10 |
Demand | 7 | 5 | 3 | 2 |
Transportation schedule:
O1 → D1
O1 → D2
O2 → D4
O3 → D1
O3 → D3
O3 → D4
i.e x11 = 1
x12 = 5
x24 = 1
x31 = 6
x33 = 3
x34 = 1
Total cost is given by = (1 × 2) + (5 × 3) + (1 × 1) + (6 × 5) + (3 × 15) + (1 × 9)
= 2 + 15 + 1 + 30 + 45 + 9
= 102
Thus the optimal (minimal) cost of the given transportation problem by Vogel’s approximation method is ₹ 102.
APPEARS IN
संबंधित प्रश्न
What is transportation problem?
What do you mean by balanced transportation problem?
Find an initial basic feasible solution of the following problem using the northwest corner rule.
D1 | D2 | D3 | D4 | Supply | |
O1 | 5 | 3 | 6 | 2 | 19 |
O2 | 4 | 7 | 9 | 1 | 37 |
O3 | 3 | 4 | 7 | 5 | 34 |
Demand | 16 | 18 | 31 | 25 |
Obtain an initial basic feasible solution to the following transportation problem by using least-cost method.
D1 | D2 | D3 | Supply | |
O1 | 9 | 8 | 5 | 25 |
O2 | 6 | 8 | 4 | 35 |
O3 | 7 | 6 | 9 | 40 |
Demand | 30 | 25 | 45 |
Consider the following transportation problem.
D1 | D2 | D3 | D4 | Availability | |
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine initial basic feasible solution by VAM.
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using North West Corner rule
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using Least Cost method
Choose the correct alternative:
In a non – degenerate solution number of allocation is
Choose the correct alternative:
In a degenerate solution number of allocations is
Consider the following transportation problem
Detination | Availabiity | ||||
D1 | D2 | D3 | D4 | ||
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine an initial basic feasible solution using Least cost method