Advertisements
Advertisements
प्रश्न
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using North West Corner rule
उत्तर
Total demand (ai) = 7 + 12 + 11 = 30 and total supply (bj) = 10 + 10 + 10 = 30.
North West Comer rule (NWC)
First allocation:
I | II | III | (ai) | |
A | (7)1 | 2 | 6 | 7/0 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
(bj) | 10/3 | 10 | 10 |
Second allocation:
I | II | III | (ai) | |
B | (3)0 | 4 | 2 | 12/9 |
C | 3 | 1 | 5 | 11 |
(bj) | 3/0 | 10 | 10 |
Third allocation:
II | III | (ai) | |
B | (9)4 | 2 | 9/0 |
C | 1 | 5 | 11 |
(bj) | 10/1 | 10 |
Fourth allocation:
II | III | (ai) | |
C | (1)1 | (10)5 | 11/10/0 |
(bj) | 10/1 | 10/0 |
We first allot 1 unit to (C, II) cell and then the balance 10 units to (C, III) cell.
Thus we have the following allocations:
I | II | III | Demand | |
A | (7)1 | 2 | 6 | 7 |
B | (3)0 | (9)4 | 2 | 12 |
C | 3 | (1)1 | (10)5 | 11 |
Supply | 10/3 | 10 | 10 |
Transportation schedule:
A → I
B → I
B → II
C → II
C → III
i.e x11 = 7
x21 = 3
x22 = 9
x32 = 1
x33 = 10
Total cost = (7 × 1) + (3 × 0) + (9 × 4) + (1 × 1) + (10 × 5)
= 7 + 0 + 36 + 1 + 50
= ₹ 94
APPEARS IN
संबंधित प्रश्न
What do you mean by balanced transportation problem?
Find an initial basic feasible solution of the following problem using the northwest corner rule.
D1 | D2 | D3 | D4 | Supply | |
O1 | 5 | 3 | 6 | 2 | 19 |
O2 | 4 | 7 | 9 | 1 | 37 |
O3 | 3 | 4 | 7 | 5 | 34 |
Demand | 16 | 18 | 31 | 25 |
Determine an initial basic feasible solution of the following transportation problem by north west corner method.
Bangalore | Nasik | Bhopal | Delhi | Capacity | |
Chennai | 6 | 8 | 8 | 5 | 30 |
Madurai | 5 | 11 | 9 | 7 | 40 |
Trickly | 8 | 9 | 7 | 13 | 50 |
Demand (Units/day) |
35 | 28 | 32 | 25 |
Explain Vogel’s approximation method by obtaining initial feasible solution of the following transportation problem.
D1 | D2 | D3 | D4 | Supply | |
O1 | 2 | 3 | 11 | 7 | 6 |
O2 | 1 | 0 | 6 | 1 | 1 |
O3 | 5 | 8 | 15 | 9 | 10 |
Demand | 7 | 5 | 3 | 2 |
Consider the following transportation problem.
D1 | D2 | D3 | D4 | Availability | |
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine initial basic feasible solution by VAM.
Choose the correct alternative:
In a non – degenerate solution number of allocation is
Choose the correct alternative:
Solution for transportation problem using ______ method is nearer to an optimal solution.
Choose the correct alternative:
In an assignment problem the value of decision variable xij is ______
The following table summarizes the supply, demand and cost information for four factors S1, S2, S3, S4 Shipping goods to three warehouses D1, D2, D3.
D1 | D2 | D3 | Supply | |
S1 | 2 | 7 | 14 | 5 |
S2 | 3 | 3 | 1 | 8 |
S3 | 5 | 4 | 7 | 7 |
S4 | 1 | 6 | 2 | 14 |
Demand | 7 | 9 | 18 |
Find an initial solution by using north west corner rule. What is the total cost for this solution?
Determine an initial basic feasible solution to the following transportation problem by using least cost method
Destination | Supply | ||||
D1 | D2 | D3 | |||
S1 | 9 | 8 | 5 | 25 | |
Source | S2 | 6 | 8 | 4 | 35 |
S3 | 7 | 6 | 9 | 40 | |
Requirement | 30 | 25 | 45 |