हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा १२

Explain Vogel’s approximation method by obtaining initial feasible solution of the following transportation problem. D1 D2 D3 D4 Supply O1 2 3 11 7 6 O2 1 0 6 1 1 O3 5 8 15 9 10 Demand 7 5 3 2 - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Explain Vogel’s approximation method by obtaining initial feasible solution of the following transportation problem.

  D1 D2 D3 D4 Supply
O1 2 3 11 7 6
O2 1 0 6 1 1
O3 5 8 15 9 10
Demand 7 5 3 2  
सारिणी
योग

उत्तर

Let ‘ai‘ denote the supply and ‘bj‘ denote the demand `sum"a"_"i"` = 6 + 1 + 10 = 17 and `sum"b"_"j"` = 7 + 5 + 3 + 2 = 17

`sum"a"_"i" = sum"b"_"j"`

i.e Total supply = Total demand.

The given problem is a balanced transportation problem. Hence there exists a feasible solution to the given problem.

First, we find the difference (penalty) between the first two smallest costs in each row and column and write them in brackets against the respective rows and columns.

First allocation:

  D1 D2 D3 D4 (ai) Penalty
O1 2 3 11 7 6 (1)
O2 1 0 6 (1)1 1/10 (1)
O3 5 8 15 9 10 (3)
(bj) 7 5 3 2/1    
Penalty (1) (3) (5) (6)    

The largest difference is 6 corresponding to column D4.

In this column least cost is (O2, D4).

Allocate min (2, 1) to this cell.

Second allocation:

  D1 D2 D3 D4 (ai) Penalty
O1 2 (5)3 11 7 6/1 (1)
O3 5 8 15 9 10 (3)
(bj) 7 5/0 3 2/1    
Penalty (3) (5) (4) (2)    

The largest difference is 5 in column D2.

Here the least cost is (O1, D2).

So allocate min (5, 6) to this cell.

Third allocation:

  D1 D3 D4 (ai) Penalty
O1 (1)2 11 7 1/0 (5)
O3 5 15 9 10 (4)
(bj) 7/6 3 1    
Penalty (3) (4) (2)    

The largest penalty is 5 in row O1.

The least cost is in (O1, D1).

So allocate min (7, 1) here.

Fourth allocation:

  D1 D3 D4 (ai) Penalty
O3 (6)5 15 9 10/4 (4)
(bj) 6/0 3 1    
Penalty    

Fifth allocation:

  D3 D4 (ai) Penalty
O3 (3)15 (1)9 4/3/0 (6)
(bj) 3/0 1/0    
Penalty    

We allocate min (1, 4) to (O3, D4) cell since it has the least cost.

Finally the balance we allot to cell (O3, D3).

Thus we have the following allocations:

  D1 D2 D3 D4 (ai)
O1 (1)2 (5)3 11 7 6
O2 1 0 6 (1)1 1
O3 (6)5 8 (3)15 (1)9 10
(bj) 7 5 3 2  

Transportation schedule:

O1 → D1

O1 → D2

O2 → D4

O3 → D1

O3 → D3

O3 → D4

i.e x11 = 12

x12 = 5,

x24 = 1

x31 = 6

x33 = 3

x34 = 1

Total cost = (1 × 2) + (5 × 3) + (1 × 1) + (6 × 5) + (3 × 15) + (1 × 9)

= 2 + 15 + 1 + 30 + 45 + 9

= 102

shaalaa.com
Transportation Problem
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Operations Research - Exercise 10.1 [पृष्ठ २५०]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
अध्याय 10 Operations Research
Exercise 10.1 | Q 8 | पृष्ठ २५०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×