Total availability is 250 + 300 + 400 = 950
Total requirement is 200 + 225 + 275 + 250 = 950
Since Σai = Σbj the problem is a balanced transportation problem and we can find an initial basic feasible solution.
First Allocation:
|
D |
E |
F |
C |
(ai) |
A |
(200)11 |
13 |
17 |
14 |
250/5 |
B |
16 |
18 |
14 |
10 |
300 |
C |
21 |
24 |
13 |
10 |
400 |
(bj) |
200/0 |
225 |
275 |
250 |
|
Second allocation:
|
E |
F |
C |
(ai) |
A |
(50)13 |
17 |
14 |
50/5 |
B |
18 |
14 |
10 |
300 |
C |
24 |
13 |
10 |
400 |
(bj) |
225/175 |
275 |
250 |
|
Third allocation:
|
E |
F |
C |
(ai) |
B |
(175)18 |
14 |
10 |
300/125 |
C |
24 |
13 |
10 |
400 |
(bj) |
175/0 |
275 |
250 |
|
Fourth allocation:
|
F |
C |
(ai) |
B |
(125)14 |
10 |
125/0 |
C |
13 |
10 |
400 |
(bj) |
275/150 |
250 |
|
Fifth allocation:
|
F |
C |
(ai) |
C |
(150)13 |
(250)10 |
400/250/0 |
(bj) |
150/0 |
250/0 |
|
We first allocate 150 units to cell (C, F).
Then we allocate balance of 250 units to cell (C, G)
Thus we have the following allocation:
|
D |
E |
F |
C |
Available |
A |
(200)11 |
(50)13 |
17 |
14 |
250 |
B |
16 |
(175)18 |
(125)14 |
10 |
300 |
C |
21 |
24 |
(150)13 |
(250)10 |
400 |
Required |
200 |
225 |
275 |
250 |
|
Transportation schedule:
A → D
A → E
B → E
B → F
C → F
C → G
i.e x11 = 200
x12 = 50
x22 = 175
x23 = 125
x33 = 150
x34 = 250
Total cost = (200 × 11) + (50 × 13) + (175 × 18) + (125 × 14) + (150 × 13) + (250 × 10)
= 2200 + 650 + 3150 + 1750 + 1950 + 2500
= ₹ 12,200