Advertisements
Advertisements
प्रश्न
What is transportation problem?
उत्तर
The transportation problem deals with transporting goods from a source to a destination by a minimum cost.
Description: A Manufacturer has a number of factories which produces goods at a fixed rate.
He also has a number of warehouses, each of which has a fixed storage capacity.
There is a cost to transport goods from a factory to a warehouse.
Find the transportation of goods from factory to the warehouse that has the lowest possible cost.
Example:
Factories: A1 makes 5 units
A2 makes 4 units
A3 makes 6 units
Warehouses: b1 can store 5 units
b2 can store 3 units
b3 can store 5 units
b4 can store 2 units
Transportation costs:
b1 | b2 | b3 | b4 | |
A1 | 5 | 4 | 7 | 6 |
A2 | 2 | 5 | 3 | 2 |
A3 | 6 | 3 | 4 | 4 |
APPEARS IN
संबंधित प्रश्न
What is feasible solution and non degenerate solution in transportation problem?
Determine basic feasible solution to the following transportation problem using North west Corner rule.
Sinks | |||||||
A | B | C | D | E | Supply | ||
P | 2 | 11 | 10 | 3 | 7 | 4 | |
Origins | Q | 1 | 4 | 7 | 2 | 1 | 8 |
R | 3 | 9 | 4 | 8 | 12 | 9 | |
Demand | 3 | 3 | 4 | 5 | 6 |
Find the initial basic feasible solution of the following transportation problem:
I | II | III | Demand | |
A | 1 | 2 | 6 | 7 |
B | 0 | 4 | 2 | 12 |
C | 3 | 1 | 5 | 11 |
Supply | 10 | 10 | 10 |
Using North West Corner rule
Choose the correct alternative:
In a non – degenerate solution number of allocation is
Choose the correct alternative:
Solution for transportation problem using ______ method is nearer to an optimal solution.
The following table summarizes the supply, demand and cost information for four factors S1, S2, S3, S4 Shipping goods to three warehouses D1, D2, D3.
D1 | D2 | D3 | Supply | |
S1 | 2 | 7 | 14 | 5 |
S2 | 3 | 3 | 1 | 8 |
S3 | 5 | 4 | 7 | 7 |
S4 | 1 | 6 | 2 | 14 |
Demand | 7 | 9 | 18 |
Find an initial solution by using north west corner rule. What is the total cost for this solution?
Consider the following transportation problem
Detination | Availabiity | ||||
D1 | D2 | D3 | D4 | ||
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine an initial basic feasible solution using Least cost method
Determine an initial basic feasible solution to the following transportation problem by using north west corner rule
Destination | Supply | ||||
D1 | D2 | D3 | |||
S1 | 9 | 8 | 5 | 25 | |
Source | S2 | 6 | 8 | 4 | 35 |
S3 | 7 | 6 | 9 | 40 | |
Requirement | 30 | 25 | 45 |
Determine an initial basic feasible solution to the following transportation problem by using least cost method
Destination | Supply | ||||
D1 | D2 | D3 | |||
S1 | 9 | 8 | 5 | 25 | |
Source | S2 | 6 | 8 | 4 | 35 |
S3 | 7 | 6 | 9 | 40 | |
Requirement | 30 | 25 | 45 |
Explain Vogel’s approximation method by obtaining initial basic feasible solution of the following transportation problem.
Destination | ||||||
D1 | D2 | D3 | D4 | Supply | ||
O1 | 2 | 3 | 11 | 7 | 6 | |
Origin | O2 | 1 | 0 | 6 | 1 | 1 |
O3 | 5 | 8 | 15 | 9 | 10 | |
Demand | 7 | 5 | 3 | 2 |