Advertisements
Advertisements
प्रश्न
D, E and F are the points on sides BC, CA and AB respectively of ΔABC such that AD bisects ∠A, BE bisects ∠B and CF bisects ∠C. If AB = 5 cm, BC = 8 cm and CA = 4 cm, determine AP, CE and BD.
उत्तर
In ΔABC, CF bisects ∠C.
We know that, the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.
`therefore"AF"/"FB"="AC"/"BC"`
`rArr"AF"/(5-"AF")=4/8` [∵ FB = AB – AF = 5 – AF]
`rArr"AF"/(5-"AF")=1/2`
⇒ 2AF = 5 – AF
⇒ 2AF + AF = 5
⇒ 3AF = 5
`rArr"AF"=5/3` cm
Again, In ΔABC, BE bisects ∠B.
`therefore"AE"/"EC"="AB"/"BC"`
`rArr(4-"CE")/"CE"=5/8` [∵ AE = AC – CE = 4 – CE]
⇒ 8(4 − 𝐶𝐸) = 5 × CE
⇒ 32 – 8CE = 5CE
⇒ 32 = 13CE
`rArr"CE"=32/13` cm
Similarly,
`"BD"/"DC"="AD"/"AC"`
`rArr"BD"/(8-"BD")=5/4` [∵ DC = BC – BD = 8 – BD]
⇒ 4BD = 40 – 5BD
⇒ 9BD = 40
`rArr"BD"=40/9` cm
Hence, `AF=5/3` cm, `"CE"=32/13` cm and `"BD"=40/9` cm.