मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Determine the nature of root of the quadratic equation. 3x2+2x−23=0 - Algebra

Advertisements
Advertisements

प्रश्न

Determine the nature of root of the quadratic equation.

\[\sqrt{3} x^2 + \sqrt{2}x - 2\sqrt{3} = 0\]

बेरीज

उत्तर

\[\sqrt{3} x^2 + \sqrt{2}x - 2\sqrt{3} = 0\]

In order to find the nature of the roots we need to find the discriminant.  

D = b2 - 4ac

\[a = \sqrt{3}, b = \sqrt{2}, c = - 2\sqrt{3}\]

\[D = \left( \sqrt{2} \right)^2 - 4 \times \sqrt{3} \times \left( - 2\sqrt{3} \right)\] 

= 2 + 8 (3)

= 2 + 24

= 26 > 0

Since, the D > 0 so, real and unequal root.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Quadratic Equations - Problem Set 2 [पृष्ठ ५४]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 10 Standard SSC Maharashtra State Board
पाठ 2 Quadratic Equations
Problem Set 2 | Q 6.2 | पृष्ठ ५४

संबंधित प्रश्‍न

Compare the given quadratic equation to the general form and write values of a, b, c.

x2 – 7x + 5 = 0


Compare the given quadratic equation to the general form and write values of a,b, c.

2m2 = 5m – 5


Solve using formula.

x2 – 3x – 2 = 0


Solve using formula.

3m2 + 2m – 7 = 0


Solve using formula.

5m2 – 4m – 2 = 0


Solve using formula.

y2 + `1/3`y = 2.


Solve using formula.

5x2 + 13x + 8 = 0


The roots of the following quadratic equation is real and equal, find k.

3y+ ky +12 = 0


The roots of the following quadratic equation is real and equal, find k.

 kx (x – 2) + 6 = 0


Find the value of discriminant of the following equation.

\[\sqrt{5} x^2 - x - \sqrt{5} = 0\]


Two roots of quadratic equation is given ; frame the equation.

 10 and –10


Two roots of quadratic equation is given ; frame the equation.

\[1 - 3\sqrt{5} \text{ and } 1 + 3\sqrt{5}\] 


Two roots of quadratic equation is given ; frame the equation.

 0 and 7


Determine the nature of root of the quadratic equation.

m2 - 2m + 1 = 0


The sum of two roots of a quadratic equation is 5 and sum of their cubes is 35, find the equation.


If α and β are the roots of the equation is 3x2 + x – 10 = 0, then the value of `1/α + 1/β` is ______.


If 2 and 5 are the roots of the quadratic equation, then complete the following activity to form quadratic equation:

Activity:

Let α = 2 and β = 5 are the roots of the quadratic equation.

Then quadratic equation is:

x2 − (α + β)x + αβ = 0

∴ `x^2 - (2 + square)x + square xx 5 = 0`

∴ `x^2 - square x + square = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×