मराठी

Determine whether the following statement is true or false. Justify your answer. For all sets A, B, and C, if A ⊂ C and B ⊂ C, then A ∪ B ⊂ C - Mathematics

Advertisements
Advertisements

प्रश्न

Determine whether the following statement is true or false. Justify your answer.

For all sets A, B, and C, if A ⊂ C and B ⊂ C, then A ∪ B ⊂ C

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is True.

Explanation:

Let x ∈ A ∪ B

⇒ x ∈ A or x ∈ B

⇒ x ∈ C or x ∈ B  ......[∵ A ⊂ C and B ⊂ C]

⇒ x ∈ C

⇒ A ∪ B ⊂ C

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Sets - Exercise [पृष्ठ १४]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the union of the following pairs of sets:

X = {1, 3, 5} Y = {1, 2, 3}


Find the union of the following pairs of sets:

A = {1, 2, 3}, B = Φ


Let A = {a, b}, B = {a, b, c}. Is A ⊂ B? What is A ∪ B?


If A and B are two sets such that A ⊂ B, then what is A ∪ B?


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

A ∪ B


Show that for any sets A and B, A = (A ∩ B) ∪ (A – B) and A ∪ (B – A) = (A ∪ B)


Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identities: 

\[A \cup \left( B \cap C \right) = \left( A \cup B \right) \cap \left( A \cup C \right)\]


Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie:

\[A \cap \left( B - C \right) = \left( A \cap B \right) - \left( A \cap C \right)\]


Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie: 

\[A - \left( B \cup C \right) = A\left( A - B \right) \cap \left( A - C \right)\] 


Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie: 

\[A - \left( B \cap C \right) = \left( A - B \right) \cup \left( A - C \right)\] 


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

A ∪ C


Observe the given Venn diagram and write the following sets.

  1. A
  2. B
  3. A ∪ B
  4. U
  5. A'
  6. B'
  7. (A ∪ B)'

Determine whether the following statement is true or false. Justify your answer.

For all sets A and B, (A – B) ∪ (A ∩ B) = A


Determine whether the following statement is true or false. Justify your answer.

For all sets A, B, and C, if A ⊂ B, then A ∩ C ⊂ B ∩ C


For all sets A and B, A ∪ (B – A) = A ∪ B


For all sets A and B, A – (A – B) = A ∩ B


For all sets A and B, A – (A ∩ B) = A – B


For all sets A and B, (A ∪ B) – B = A – B


If A and B are two sets, then A ∩ (A ∪ B) equals ______.


If X and Y are two sets and X′ denotes the complement of X, then X ∩ (X ∪ Y)′ is equal to ______.


Let S1 = `{x ∈ R - {1, 2}: ((x + 2)(x^2 + 3x + 5))/(-2 + 3x - x^2) ≥ 0}` and S2 = {x ∈ R : 32x – 3x+1 – 3x+2 + 27 ≤ 0}. Then, S1 ∪ S2 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×