Advertisements
Advertisements
рдкреНрд░рд╢реНрди
Divide 29 into two parts so that the sum of the squares of the parts is 425.
рдЙрддреНрддрд░
Let the two parts be ‘x’ and 29 – x
⇒ Given that the sum of the squares of the parts is 425.
Then, by hypothesis, we have
⇒ ЁЭСе2 + (29 - ЁЭСе)2 = 425
⇒ 2ЁЭСе2 - 58ЁЭСе + 841 - 425 = 0
⇒ 2ЁЭСе2 - 58ЁЭСе + 416 = 0
⇒ 2[ЁЭСе2 - 29ЁЭСе + 208] = 0
⇒ ЁЭСе2 - 29ЁЭСе + 208 = 0
⇒ ЁЭСе2 - 13ЁЭСе - 16ЁЭСе + 208 = 0 [By the method of factorisation]
⇒ ЁЭСе(ЁЭСе - 13) - 16(ЁЭСе - 13) = 0
⇒ (ЁЭСе - 13)(ЁЭСе - 16) = 0
⇒ x = 13 or x = 16
Case i: If x = 13; 29 - x = 29 - 13 = 16
Case ii: x = 16; 29 - x = 29 - 16 = 13
∴ The two parts that the sum of the squares of the parts is 425 are 13, 16.
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Solve the equation:`14/(x+3)-1=5/(x+1); xne-3,-1` , for x
Solve the following quadratic equation by factorisation.
3x2 - 2√6x + 2 = 0
Solve the following equation: (x-8)(x+6) = 0
Solve the following equation:
`("x" + 1)/("x" - 1) - ("x" - 1)/("x" + 1) = 5/6 , "x" ≠ -1,1`
Solve equation using factorisation method:
x2 – 10x – 24 = 0
Solve the following by reducing them to quadratic equations:
`((7y - 1)/y)^2 - 3 ((7y - 1)/y) - 18 = 0, y ≠ 0`
In each of the following, determine whether the given values are solution of the given equation or not:
x2 - 3`sqrt(3)` + 6 = 0; x = `sqrt(3)`, x = -2`sqrt(3)`
In each of the following, determine whether the given values are solution of the given equation or not:
`x^2 - sqrt(2) - 4 = 0; x = -sqrt(2), x = -2sqrt(2)`
Solve the following equation by factorization
`(x^2 - 5x)/(2)` = 0
Solve the quadratic equation by factorisation method:
x2 – 15x + 54 = 0