English

Divide 29 into Two Parts So that the Sum of the Squares of the Parts is 425. - Mathematics

Advertisements
Advertisements

Question

Divide 29 into two parts so that the sum of the squares of the parts is 425.

Solution

Let the two parts be ‘x’ and 29 – x

⇒ Given that the sum of the squares of the parts is 425.

Then, by hypothesis, we have

⇒ ๐‘ฅ2 + (29 - ๐‘ฅ)2 = 425

⇒ 2๐‘ฅ2 - 58๐‘ฅ + 841 - 425 = 0

⇒ 2๐‘ฅ2 - 58๐‘ฅ + 416 = 0

⇒ 2[๐‘ฅ2 - 29๐‘ฅ + 208] = 0

⇒ ๐‘ฅ2 - 29๐‘ฅ + 208 = 0

⇒ ๐‘ฅ2 - 13๐‘ฅ - 16๐‘ฅ + 208 = 0 [By the method of factorisation]

⇒ ๐‘ฅ(๐‘ฅ - 13) - 16(๐‘ฅ - 13) = 0

⇒ (๐‘ฅ - 13)(๐‘ฅ - 16) = 0

⇒ x = 13 or x = 16

Case i: If x = 13; 29 - x = 29 - 13 = 16

Case ii: x = 16; 29 - x = 29 - 16 = 13

∴ The two parts that the sum of the squares of the parts is 425 are 13, 16.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Quadratic Equations - Exercise 4.7 [Page 51]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 4 Quadratic Equations
Exercise 4.7 | Q 2 | Page 51
Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×