Advertisements
Advertisements
प्रश्न
दो समांतर श्रेढ़ियों का एक ही सार्व अंतर है। एक समांतर श्रेढ़ी का प्रथम पद 2 है और दूसरी का प्रथम पद 7 है। उनके दसवें पदों का अंतर वही है जो उनके 21 वें पदों का अंतर है और यह वही है जो उनके किन्हीं दो संगत पदों का अंतर है। क्यों ?
उत्तर
मान लीजिए कि दो AP हैं जिनमें पहले पद a और A हैं।
और उनके सामान्य अंतर क्रमशः d और D हैं।
मान लीजिए n कोई पद है।
an = a + (n – 1)d
An = A + (n – 1)D
चूंकि दोनों AP के लिए सामान्य अंतर बराबर है।
हमारे पास D = d है।
इसका उपयोग हमने किया है।
An – an = a + (n – 1)d – [A + (n – 1)D]
= a + (n – 1)d – A – (n – 1)d
= a – A
चूँकि a – A एक स्थिर मान है।
इसलिए, किसी भी संबंधित शर्तों के बीच का अंतर a – A के बराबर होगा।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित A.P. है या नहीं? यदि कोई A.P. है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन और पद लिखिए:
2, 4, 8, 16,...
निम्नलिखित A.P. है या नहीं? यदि कोई A.P. है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन और पद लिखिए:
a, 2a, 3a, 4a,...
निम्नलिखित A.P. है या नहीं? यदि कोई A.P. है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन और पद लिखिए:
`sqrt3, sqrt6, sqrt9, sqrt12,...`
संख्याओं – 10, – 6, – 2, 2,... की सूची ______।
निम्नलिखित में कौन एक AP बनाते हैं? अपने उत्तर का औचित्य दीजिए।
0, 2, 0, 2,...
निम्नलिखित स्थितियों में से किन में, संबद्ध संख्याओं की सूची से एक AP बनती है? अपने उत्तरों के लिए कारण दीजिए।
किसी स्कूल द्वारा प्रत्येक विद्यार्थी से पूरे सत्र में प्रत्येक महीने में लिया गया शुल्क, जब कि मासिक शुल्क 400 रु है।
निम्नलिखित स्थितियों में से किन में, संबद्ध संख्याओं की सूची से एक AP बनती है? अपने उत्तरों के लिए कारण दीजिए।
किसी स्कूल द्वारा कक्षा I से XII तक से प्रत्येक मास में लिया गया शुल्क, जबकि कक्षा I का मासिक शुल्क 250 रु है तथा यह प्रत्येक अगली कक्षा के लिए 50 रु बढ़ता जाता है।
स्तंभ A में दी हुई प्रत्येक AP को स्तंभ B में दिए उपयुक्त सार्व अंतर से सुमेलित कीजिए:
स्तंभ A | स्तंभ B |
(A1) 2, –2, –6, –10,... | (B1) `2/3` |
(A2) a = –18, n = 10, an = 0 | (B2) –5 |
(A3) a = 0, a10 = 6 | (B3) 4 |
(A4) a2 = 13, a4 = 3 | (B4) –4 |
(B5) 2 | |
(B6) `1/2` | |
(B7) 5 |
k का मान ज्ञात कीजिए ताकि k2 + 4k + 8, 2k2 + 3k + 6, 3k2 + 4k + 4 किसी AP के तीन क्रमागत पद हों।
207 को तीन ऐसे भागों में विभक्त कीजिए कि ये भाग एक AP में हों तथा दो छोटे भागों का गुणनफल 4623 हो।