Advertisements
Advertisements
प्रश्न
AP: −3, –7, −11, ... के लिए क्या हम a30 और a20 को वास्तव में बिना ज्ञात किए सीधे a30 – a20 ज्ञात कर सकते हैं? अपने उत्तर के लिए कारण दीजिए।
पर्याय
सत्य
असत्य
उत्तर
यह कथन सत्य है।
स्पष्टीकरण:
दिया गया है,
पहला पद, a = – 3
सामान्य अंतर, d = a2 – a1
= – 7 – (– 3)
= – 4
a30 – a20 = a + 29d – (a + 19d)
= 10d
= – 40
ऐसा इसलिए है क्योंकि किसी AP के किन्हीं दो पदों के बीच का अंतर उस AP के सार्व अंतर के समानुपाती होता है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित सारणी में, रिक्त स्थान को भरिए, जहाँ AP का प्रथम पद a, सार्व अंतर d और nवाँ पद an है:
a | d | n | an |
7 | 3 | 8 | ______ |
निम्नलिखित सारणी में, रिक्त स्थान को भरिए, जहाँ AP का प्रथम पद a, सार्व अंतर d और nवाँ पद an है:
a | d | n | an |
-18.9 | 2.5 | ______ | 3.6 |
निम्नलिखित समांतर श्रेढि में कितने पद हैं?
`18, 15 1/2, 13`, ..., -47
यदि किसी A.P. के तीसरे और नौवें पद क्रमशः 4 और -8 हैं, तो इसका कौन-सा पद शून्य होगा?
रामकली ने किसी वर्ष के प्रथम सप्ताह में ₹ 50 की बचत की और फिर अपनी साप्ताहिक बचत ₹ 17.5 बढ़ाती गई। यदि nवें सप्ताह में उसकी साप्ताहिक बचत ₹ 207.50 हो जाती है, तो n ज्ञात कीजिए।
दर्शाइए कि a1, a2,…,an,.... से एक A.P. बनाती है, यदि an नीचे दिए अनुसार परिभाषित हैं:
an = 9 - 5n
साथ ही, ऊपर दिए गए स्थिति में, प्रथम 15 पदों का योग ज्ञात कीजिए।
A.P.: 121, 117, 113,...., का कौन-सा पद सबसे पहला ऋणात्मक पद होगा?
[संकेत: an < 0 के लिए n ज्ञात कीजिए।]
दो समांतर श्रेढ़ियों का एक ही सार्व अंतर है। इनमें से एक का प्रथम पद –1 और दूसरी का प्रथम पद – 8 है। तब, इनके चौथे पदों के बीच का अंतर ______ है।
AP: –11, –8, –5, ..., 49 के अंत से चौथा पद ______ है।
किसी AP के 5 वें और 7 वें पदों का योग 52 है तथा 10 वाँ पद 46 है। वह AP ज्ञात कीजिए।