Advertisements
Advertisements
प्रश्न
दर्शाइए कि a1, a2,…,an,.... से एक A.P. बनाती है, यदि an नीचे दिए अनुसार परिभाषित हैं:
an = 9 - 5n
साथ ही, ऊपर दिए गए स्थिति में, प्रथम 15 पदों का योग ज्ञात कीजिए।
उत्तर
an = 9 − 5n
a1 = 9 − 5 × 1
= 9 − 5
= 4
a2 = 9 − 5 × 2
= 9 − 10
= −1
a3 = 9 − 5 × 3
= 9 − 15
= −6
a4 = 9 − 5 × 4
= 9 − 20
= −11
ऐसा देखा जा सकता है
a2 − a1 = −1 − 4 = −5
a3 − a2 = −6 − (−1) = −5
a4 − a3 = −11 − (−6) = −5
अर्थात, ak + 1 − ak हर बार समान होता है। इसलिए, यह एक A.P. है जिसका सार्व अंतर −5 है और पहला पद 4 है।
`S_n = n/2 [2a + (n - 1)d]`
`S_15 = 15/2 [2(4) + (15 - 1) (-5)]`
= `15/2 [8 + 14(-5)]`
= `15/2 (8 - 70)`
= `15/2 (-62)`
= 15 × (-31)
= -465
APPEARS IN
संबंधित प्रश्न
दी हुई A.P. के प्रथम चार पद लिखिए, जबकि प्रथम पद a और सार्व अंतर d निम्नलिखित हैं:
a = -1.25, d = -0.25
निम्नलिखित A.P. के लिए प्रथम पद तथा सार्व अंतर लिखिए:
0.6, 1.7, 2.8, 3.9,....
निम्नलिखित में सही उत्तर चुनिए और उसका औचित्य दीजिए:
A.P.: 10, 7, 4, ..., का 30 वाँ पद है:
A.P.: 3, 15, 27, 39, … का कौन-सा पद उसके 54वें पद से 132 अधिक होगा?
A.P.: 121, 117, 113,...., का कौन-सा पद सबसे पहला ऋणात्मक पद होगा?
[संकेत: an < 0 के लिए n ज्ञात कीजिए।]
किसी A.P. के तीसरे और सातवें पदों का योग 6 है और उनका गुणनफल 8 है। इस A.P. के प्रथम 16 पदों का योग ज्ञात कीजिए।
क्या AP: 31, 28, 25, ... का 0 कोई पद है? अपने उत्तर का औचित्य दीजिए।
प्रत्येक AP के प्रथम तीन पद लिखिए, जिनके a और d नीचे दिए हैं :
a = `1/2`, d = `-1/6`
किसी AP के 26 वें, 11 वें और अंतिम पद क्रमश : 0, 3 और `-1/5` हैं। इसका सार्व अंतर और पदों की संख्या ज्ञात कीजिए।
10 और 300 के बीच में स्थित ऐसी कितनी संख्याएँ हैं, जिनको 4 से भाग देने पर शेषफल 3 रहता है?