Advertisements
Advertisements
Question
दर्शाइए कि a1, a2,…,an,.... से एक A.P. बनाती है, यदि an नीचे दिए अनुसार परिभाषित हैं:
an = 9 - 5n
साथ ही, ऊपर दिए गए स्थिति में, प्रथम 15 पदों का योग ज्ञात कीजिए।
Solution
an = 9 − 5n
a1 = 9 − 5 × 1
= 9 − 5
= 4
a2 = 9 − 5 × 2
= 9 − 10
= −1
a3 = 9 − 5 × 3
= 9 − 15
= −6
a4 = 9 − 5 × 4
= 9 − 20
= −11
ऐसा देखा जा सकता है
a2 − a1 = −1 − 4 = −5
a3 − a2 = −6 − (−1) = −5
a4 − a3 = −11 − (−6) = −5
अर्थात, ak + 1 − ak हर बार समान होता है। इसलिए, यह एक A.P. है जिसका सार्व अंतर −5 है और पहला पद 4 है।
`S_n = n/2 [2a + (n - 1)d]`
`S_15 = 15/2 [2(4) + (15 - 1) (-5)]`
= `15/2 [8 + 14(-5)]`
= `15/2 (8 - 70)`
= `15/2 (-62)`
= 15 × (-31)
= -465
APPEARS IN
RELATED QUESTIONS
निम्नलिखित सारणी में, रिक्त स्थान को भरिए, जहाँ AP का प्रथम पद a, सार्व अंतर d और nवाँ पद an है:
a | d | n | an |
-18 | ______ | 10 | 0 |
निम्नलिखित समांतर श्रेढि में रिक्त खान (boxes) के पदों को ज्ञात कीजिए।
`square, 38, square, square, square, -22`
निम्नलिखित समांतर श्रेढ़ी में कितने पद हैं?
7, 13, 19, ..., 205
A.P.: 3, 15, 27, 39, … का कौन-सा पद उसके 54वें पद से 132 अधिक होगा?
10 और 250 के बीच में 4 के कितने गुणज हैं?
AP : `-5, (-5)/2, 0, 5/2, ...` का 11 वाँ पद ______ है।
AP: 21, 42, 63, 84,... का कौन-सा पद 210 है?
AP: –11, –8, –5, ..., 49 के अंत से चौथा पद ______ है।
प्रत्येक AP के प्रथम तीन पद लिखिए, जिनके a और d नीचे दिए हैं :
a = `sqrt(2)`, d = `1/sqrt(2)`
वह AP निर्धारित कीजिए जिसका पाँचवाँ पद 19 है तथा आठवें पद का तेरहवें पद से अंतर 20 है।