Advertisements
Advertisements
Question
दर्शाइए कि a1, a2,…,an,.... से एक A.P. बनाती है, यदि an नीचे दिए अनुसार परिभाषित हैं:
an = 3 + 4n
साथ ही, ऊपर दिए गए स्थिति में, प्रथम 15 पदों का योग ज्ञात कीजिए।
Solution
an = 3 + 4n
a1 = 3 + 4(1) = 7
a2 = 3 + 4(2) = 3 + 8 = 11
a3 = 3 + 4(3) = 3 + 12 = 15
a4 = 3 + 4(4) = 3 + 16 = 19
यह देखा जा सकता है कि
a2 − a1 = 11 − 7 = 4
a3 − a2 = 15 − 11 = 4
a4 − a3 = 19 − 15 = 4
अर्थात, ak + 1 − ak हर बार समान है। इसलिए, यह एक समान्तर श्रेढ़ी है जिसका सार्व अंतर 4 है तथा पहला पद 7 है।
`S_n = n/2 [2a + (n - 1)d]`
`S_15 = 15/2 [2(7) + (15 - 1) × 4]`
= `15/2 [(14) + 56]`
= `15/2 (70)`
= 15 × 35
= 525
APPEARS IN
RELATED QUESTIONS
दी हुई A.P. के प्रथम चार पद लिखिए, जबकि प्रथम पद a और सार्व अंतर d निम्नलिखित हैं:
a = 4, d = -3
दी हुई A.P. के प्रथम चार पद लिखिए, जबकि प्रथम पद a और सार्व अंतर d निम्नलिखित हैं:
a = -1.25, d = -0.25
निम्नलिखित A.P. के लिए प्रथम पद तथा सार्व अंतर लिखिए:
`1/3, 5/3, 9/3, 13/3,....`
निम्नलिखित समांतर श्रेढि में रिक्त खान (boxes) के पदों को ज्ञात कीजिए।
`-4, square, square, square, square, 6`
क्या A.P., 11, 8, 5, 2 ... का एक पद -150 है? क्यों?
यदि किसी A.P. के तीसरे और नौवें पद क्रमशः 4 और -8 हैं, तो इसका कौन-सा पद शून्य होगा?
सुब्बा राव ने 1995 में ₹ 5000 के मासिक वेतन पर कार्य आरंभ किया और प्रत्येक वर्ष ₹ 200 की वेतन वृद्धि प्राप्त की। किस वर्ष में उसका वेतन ₹ 7000 हो गया?
वह AP निर्धारित कीजिए जिसका पाँचवाँ पद 19 है तथा आठवें पद का तेरहवें पद से अंतर 20 है।
उस AP का 20 वाँ पद ज्ञात कीजिए जिसका 7 वाँ पद 11 वें पद से 24 कम है और प्रथम पद 12 है।
AP: `- 4/3, -1, -2/3,..., 4 1/3` के दोनों मध्य पदों का योग ज्ञात कीजिए।