Advertisements
Advertisements
प्रश्न
दर्शाइए कि a1, a2,…,an,.... से एक A.P. बनाती है, यदि an नीचे दिए अनुसार परिभाषित हैं:
an = 3 + 4n
साथ ही, ऊपर दिए गए स्थिति में, प्रथम 15 पदों का योग ज्ञात कीजिए।
उत्तर
an = 3 + 4n
a1 = 3 + 4(1) = 7
a2 = 3 + 4(2) = 3 + 8 = 11
a3 = 3 + 4(3) = 3 + 12 = 15
a4 = 3 + 4(4) = 3 + 16 = 19
यह देखा जा सकता है कि
a2 − a1 = 11 − 7 = 4
a3 − a2 = 15 − 11 = 4
a4 − a3 = 19 − 15 = 4
अर्थात, ak + 1 − ak हर बार समान है। इसलिए, यह एक समान्तर श्रेढ़ी है जिसका सार्व अंतर 4 है तथा पहला पद 7 है।
`S_n = n/2 [2a + (n - 1)d]`
`S_15 = 15/2 [2(7) + (15 - 1) × 4]`
= `15/2 [(14) + 56]`
= `15/2 (70)`
= 15 × 35
= 525
APPEARS IN
संबंधित प्रश्न
निम्नलिखित समांतर श्रेढि में रिक्त खान (box) के पद को ज्ञात कीजिए।
`square, 13, square, 3`
निम्नलिखित समांतर श्रेढ़ी में कितने पद हैं?
7, 13, 19, ..., 205
क्या A.P., 11, 8, 5, 2 ... का एक पद -150 है? क्यों?
उस A.P. का 31वाँ पद ज्ञात कीजिए, जिसका 11वाँ पद 38 है और 16वाँ पद 73 है।
किसी A.P. का 17वाँ पद उसके 10वें पद से 7 अधिक है। इसका सार्व अंतर ज्ञात कीजिए।
AP: 21, 42, 63, 84,... का कौन-सा पद 210 है?
यदि किसी AP का सार्व अंतर 5 है, तो a18 – a13 क्या है?
उस AP का सार्व अंतर क्या है, जिसमें a18 – a14 32 है?
यदि किसी AP के 7 वें पद का 7 गुना उसके 11 वें पद के 11 गुने के बराबर हो, तो उसका 18 वाँ पद होगा ______ है।
AP: –2, –4, –6,..., –100 का अंत से 12 वाँ पद ज्ञात कीजिए।