Advertisements
Advertisements
प्रश्न
दोन फासे एकाच वेळी टाकले असता खालील घटनाची संभाव्यता काढा.
पहिल्या फाशावरील अंक दुसऱ्या फाशावरील अंकापेक्षा मोठा असणे.
उत्तर
नमुना अवकाश
S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
∴ n(S) = 36
समजा, घटना C: पहिल्या फाशावरील अंक दुसऱ्या फाशावरील अंकापेक्षा मोठा असणे, ही आहे.
∴ C = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5 ,3), (5, 4), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5)}
∴ n(C) = 15
∴ P(C) = `("P"("C"))/("P"("S"))`
∴ P(C) = `15/36`
∴ P(C) = `5/12`
APPEARS IN
संबंधित प्रश्न
एका खोक्यात 5 स्ट्रॉबेरीची, 6 कॉफीची व 2 पेपरमिंटची चॉकलेट्स आहेत. त्या खोक्यातील एक चॉकलेट काढले, तर खालील घटनांची संभाव्यता काढण्यासाठी कृती पूर्ण करा.
घटना A: काढलेले चॉकलेट कॉफीचे असणे.
घटना B: काढलेले चॉकलेट पेपरमिंटचे असणे.
कृती: समजा, नमुना अवकाश 'S’ आहे.
∴ n(S) = 5 + 6 + 2 = 13
घटना A : काढलेले चॉकलेट कॉफीचे असणे.
∴ n(A) = `square`
∴ P(A) = `square/("n"("S"))` ............[सूत्र]
P(A) = `square/13`
घटना B: काढलेले चॉकलेट पेपरमिंटचे असणे.
∴ n(B) = `square`
∴ P(B) = `square/("n"("S"))` ............[सूत्र]
P(B) = `square/13`
दोन नाणी फेकली असता खालील घटनाची संभाव्यता काढा.
एकही छापा न मिळणे.
दोन फासे एकाच वेळी टाकले असता खालील घटनाची संभाव्यता काढा.
पृष्ठभागावरील अंकांची बेरीज कमीत कमी 10 असणे.
योग्य रीतीने पिसलेल्या 52 पत्त्यांच्या कॅटमधून एक पत्ता काढला, तर खालील घटनाची संभाव्यता काढा.
एक्का मिळणे.
एका हॉकी संघात 6 बचाव करणारे, 4 आक्रमक व एक गोलरक्षक असे खेळाडू आहेत. यादृच्छिक पद्धतीने त्यांतील एक खेळाडू संघनायक म्हणून निवडायचा आहे, तर खालील घटनाची संभाव्यता काढा.
बचाव करणारा खेळाडू संघनायक असणे.
फुगेवाला 2 लाल, 3 निळे आणि 4 हिरवे अशा रंगीत फुग्यांतील एक फुगा प्रणालीला यादृच्छिक पद्धतीने देणार आहे, तर खालील घटनाची संभाव्यता काढा.
मिळालेला फुगा निळा असणे.
एका फाशाच्या पृष्ठभागावर 0, 1, 2, 3, 4, 5 या संख्या आहेत. हा फासा दोनदा फेकला, तर वरच्या पृष्ठांवर मिळालेल्या संख्यांचा गुणाकार शून्य असण्याची संभाव्यता काढा.
0, 1, 2, 3, 4 यांपैकी अंक घेऊन दोन अंकी संख्या तयार करायची आहे. अंकांची पुनरावृत्ती केलेली चालेल, तर खालील घटनाची संभाव्यता काढा.
ती संख्या मूळ असणे.
प्रत्येक कार्डावर एक याप्रमाणे (mathematics) या शब्दातील सर्व अक्षरे लिहिली आणि ती कार्डे पालथी ठेवली. त्यांतून एक अक्षर उचलल्यास ते अक्षर ‘m’ असण्याची संभाव्यता काढा.
एक फासा टाकला असता वरच्या पृष्ठभागावर मूळ संख्या मिळण्याची संभाव्यता काढण्याची कृती पूर्ण करून लिहा.
कृती:
एक फासा टाकला असता नमुना अवकाश 'S' आहे.
S = `{square}`
∴ n(S) = 6
घटना A: वरच्या पृष्ठभागावर मूळ संख्या मिळणे.
A = `{square}`
∴ n(A) = 3
∴ P(A) = `square/("n"("S"))` ............(सूत्र)
∴ P(A) = `square`