Advertisements
Advertisements
प्रश्न
दर्शाइए कि a के किसी भी मान के लिए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) एक सरल रेखा में नहीं है।
उत्तर
दिए गए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) हैं।
हमें यह सिद्ध करना है कि ये बिंदु सीधे नहीं हैं।
अत: हमें सिद्ध करना होगा कि ये बिंदु एक त्रिभुज बनाते हैं।
क्षेत्रफल, Δ = `1/2|("a" + 5, "a" - 4, 1),("a" - 2, "a" + 3, 1),("a", "a", 1)|`
[R1 → R1 – R3 और R2 → R2 – R3 लागू करना]
= `1/2 |(5, -4, 0),(-2, 3, 0),("a", "a", 1)|`
= `1/2[(1 * (15 - 8)]`
= `7/2 ≠ 0`
अत: त्रिभुज से दिए गए बिंदु अर्थात् बिंदु एक सीधी रेखा पर नहीं होते हैं।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।
`abs ((2,4),(-5,-1))`
निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।
`abs((cos theta, -sin theta),(sin theta, cos theta))`
निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।
`abs ((x^2 - x + 1, x - 1),(x + 1, x + 1))`
यदि `A = [(1,0,1),(0,1,2),(0,0,4)]` हो, तो दिखाइए `abs (3 A) = 27 abs A`
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((3,-4,5),(1,1,-2),(2,3,1))`
x के मान ज्ञात कीजिए यदि `abs ((2,3),(4,5)) = abs ((x, 3),(2x, 5))`
सिद्ध कीजिए कि सारणिक `[(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x)],` θ से स्वतंत्र है।
`[(cosalphacosbeta, cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalpha cosbeta,sinalphasinbeta,cosalpha)]` का मान ज्ञात कीजिए |
`[(x,y,x+y),(y,x+y,x),(x+y,x,y)]` का मान ज्ञात कीजिए।
`[(1,x,y),(1,x+y,y),(1,x,x+y)]` का मान ज्ञात कीजिए।
यदि `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, तो x ज्ञात कीजिए।
दर्शाइए कि Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)`
सारणिक ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______
मान निकालिए- `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`
मान निकालिए- `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`
मान निकालिए- `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`
मान निकालिए- `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`
सिद्ध कीजिए - `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz
यदि `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, तो x का मान ज्ञात कीजिए।
यदि `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, तब x का मान है
यदि f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, तब
यदि A और B व्युत्क्रमणीय आव्यूह हैं तब निम्न में से कौन सा सत्य नहीं है?
`|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|` = ______.
|A–1| ≠ |A|–1, जहाँ व्युत्क्रमणीय आव्यूह है।
सारणिक `|(sin"A", cos"A", sin"A" + cos"B"),(sin"B", cos"A", sin"B" + cos"B"),(sin"C", cos"A", sin"C" + cos"B")|` = 0
यदि सारणिक `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` को कोटि 3 के K सारणिकों में ऐसे विघटित किया जाए कि उनके प्रत्येक अवयव में केवल एक पद हो तब K का मान 8 है।
`|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` का अधिकतम मान `1/2` है।