Advertisements
Advertisements
प्रश्न
एक पाँसा फेकने पर ऊपरी पृष्ठभाग पर 3 से कम संख्या आने की संभाव्यता __________ होती है।
पर्याय
`1/6`
`1/3`
`1/2`
0
उत्तर
एक पाँसा फेकने पर ऊपरी पृष्ठभाग पर 3 से कम संख्या आने की संभाव्यता `underline(1/3)` होती है।
APPEARS IN
संबंधित प्रश्न
एक बक्से में 15 टिकट हैं। प्रत्येक टिकट पर 1से 15 में से एक संख्या लिखी गई है। उस बक्से में एक टिकट यादृच्छिक पद्धति से निकाली गई हो तो टिकट पर की संख्या 5 की गुणज हो। इस घटनाओं की संभाव्यता ज्ञात कीजिए।
अच्छी तरह से फेंटी गई 52 पत्तों में से एक पत्ता निकाला गया तो निम्नलिखित घटनाओं की संभाव्यता ज्ञात कीजिए।
इक्का मिलना।
जोसेफ ने एक थैली मेंं प्रत्येक कार्ड पर अंग्रेजी वर्णमाला का एक अक्षर इस प्रकार कुल 26 अक्षरों के कार्ड रखे हैं। उनमेंं से अक्षरों का एक कार्ड यादृच्छिक पद्धति से निकालना हो तो निकाले गए कार्ड का स्वर होने की संभाव्यता ज्ञात कीजिए।
एक पाँसे के छह पृष्ठभाग निम्न प्रकार से हैं।
यह पाँसा एक बार फेंकने पर दी गई घटनाओं की संभाव्यता ज्ञात कीजिए।
ऊपरी पृष्ठभाग पर ‘A’ मिलना।
किसी बक्से मेंं 30 टिकट हैं। प्रत्येक टिकट पर 1 से 30 मेंं से एक ही संख्या लिखी गई है। इसमेंं से कोई एक टिकट यादृच्छिक पद्धति से निकाला गया तो निम्न घटनाओं की संभाव्यता ज्ञात कीजिए।
टिकट पर विषम संख्या मिलने पर।
किसी बक्से मेंं 30 टिकट हैं। प्रत्येक टिकट पर 1 से 30 मेंं से एक ही संख्या लिखी गई है। इसमेंं से कोई एक टिकट यादृच्छिक पद्धति से निकाला गया तो निम्न घटनाओं की संभाव्यता ज्ञात कीजिए।
टिकट पर पूर्ण वर्ग संख्या मिलने पर।
किसी बैग में तीन लाल, तीन सफेद, तथा तीन हरी गेंदें हैं। बैग में से यादृच्छिक पद्धति से एक गेंद निकाली गई हो। तो निम्नलिखित प्रत्येक घटना की संभाव्यता ज्ञात कीजिए।
निकाली गई गेंद का लाल होना।
0, 1, 2, 3, 4 इन अंकों की सहायता से दो अंकोंवाली संख्या बनानी है। अंकों की पुनरावृत्ति की जा सकती हो तो निम्न घटनाओं की संभाव्यता ज्ञात कीजिए।
वह संख्या 4 की गुणज होगी।
0, 1, 2, 3, 4 इन अंकों की सहायता से दो अंकोंवाली संख्या बनानी है। अंकों की पुनरावृत्ति की जा सकती हो तो निम्न घटनाओं की संभाव्यता ज्ञात कीजिए।
वह संख्या 11 की गुणज होगी।
अच्छी तरह से फेंटी गई 52 पत्तों की ताश की गड्डी में से एक पत्ता निकाला गयां। निम्न घटनाओं की संभाव्यता ज्ञात करने के लिए दी गई कृति पूर्ण करो:
घटना A: निकाला गया पत्ता इक्का हो।
घटना B: निकाला गया पत्ता हुकुम हो।
कृति:
नमूना अवकाश S हैं।
∴ n(S) = 52
घटना A: निकाला गया पत्ता इक्का हो।
∴ n(A) = `square`
P(A) = `square` .....(सूत्र)
∴ P(A) = `square/52`
∴ P(A) = `square/13`
घटना B: निकाला गया पत्ता हुकुम हो।
∴ n(B) = `square`
P(B) = `(n(B))/(n(S))`
∴ P(B) = `square/4`