Advertisements
Advertisements
प्रश्न
एक समकोण त्रिभुज ABC, जिसमें ∠B = 90° है, AB को व्यास मान कर एक वृत्त खींचा गया है, जो कर्ण AC को P पर प्रतिच्छेद करता है। सिद्ध कीजिए कि P पर वृत्त की स्पर्श रेखा BC को समद्विभाजित करती है।
उत्तर
प्रश्न के अनुसार,
समकोण ΔABC में ∠B = 90° है, AB को व्यास मानकर एक वृत्त खींचा गया है जो कर्ण AC को P पर काटता है।
साथ ही PQ, P पर स्पर्श रेखा है।
सिद्ध करना है: PQ, BC को समद्विभाजित करता है अर्थात BQ = QC
उपपत्ति: ∠APB = 90° ...[अर्द्धवृत्त में कोण समकोण होता है।]
∠BPC = 90° ...[रैखिक युग्म]
∠3 + ∠4 = 90° ...[1]
अब, ∠ABC = 90°
तो ΔABC में
∠ABC + ∠BAC + ∠ACB = 180°
90° + ∠1 + ∠5 = 180°
∠1 + ∠5 = 90° ...[2]
अब, ∠1 = ∠3 ...[स्पर्श रेखा और जीवा के बीच का कोण जीवा द्वारा एकांतर खंड में बनाए गए कोण के बराबर होता है।]
इसका उपयोग [2] में हमने किया है।
∠3 + ∠5 = 90° ...[3]
[1] और [3] से हमारे पास है।
∠3 + ∠4 = ∠3 + ∠5
∠4 = ∠5
QC = PQ ...[समान कोणों की सम्मुख भुजाएँ बराबर होती हैं।]
लेकिन साथ ही, PQ = BQ ...[बाहरी बिंदु से वृत्त पर खींची गई स्पर्श रेखाएँ बराबर होती हैं।]
तो, BQ = QC
अर्थात PQ, BC को समद्विभाजित करता है।
APPEARS IN
संबंधित प्रश्न
किसी वृत की स्पर्श रेखा उसे _____ बिन्दुओं पर प्रतिच्छेद करती है।
वृत्त तथा उसकी स्पर्श रेखा के उभयनिष्ठ बिन्दु को _______ कहते हैं।
एक वृत्त खींचिए और दो एक दी गई रेखा के समांतर दो ऐसी रेखाएँ खींचिए कि उनमें से एक स्पर्श रेखा हो तथा दूसरी छेदक रेखा हो।
यदि दो संकेंद्रीय वृत्तों की त्रिज्याएँ 4 cm और 5 cm हैं, तो एक वृत्त की प्रत्येक उस जीवा की लंबाई, जो दूसरे वृत्त पर स्पर्श रेखा है, निम्नलिखित होगी ______।
आकृति में, AB एक वृत्त की जीवा है तथा AOC वृत्त का व्यास इस प्रकार है कि ∠ACB = 50° है। यदि AT बिंदु A पर वृत्त की स्पर्श रेखा है, तो ∠BAT बराबर ______ है।
आकृति में, यदि O वृत्त का केंद्र है, PQ एक जीवा है तथा P पर खींची गई स्पर्श रेखा PR जीवा PQ के साथ 50° का कोण बनाती है, तो ∠POQ बराबर ______ है।
आकृति में, यदि PA और PB केंद्र O वाले वृत्त पर स्पर्श रेखाएँ इस प्रकार हैं कि ∠APB = 50° हैं, तब ∠OAB बराबर ______ है।
यदि एक जीवा AB वृत्त के केंद्र पर 60° का कोण अंतरित करती (बनाती) है, तो A और B पर खींची गई स्पर्श रेखाओं के बीच का कोण भी 60° होगा।
AB एक वृत्त का व्यास है और AC उसकी एक जीवा इस प्रकार है कि ∠BAC = 30° है। यदि C पर खींची गई स्पर्श रेखा बढ़ाई गई AB से D पर मिलती है, तो BC = BD होगा।
यदि एक षड्भुज ABCDEF एक वृत्त के परिगत है, तो सिद्ध कीजिए कि AB + CD + EF = BC + DE + FA है।