Advertisements
Advertisements
प्रश्न
Enthalpy of neutralization is always a constant when a strong acid is neutralized by a strong base: account for the statement.
उत्तर
- Enthalpy of neutralization of a strong acid by a strong base is always a constant and it is equal to − 57.32 kJ irrespective of which acid or base is used.
- Because strong acid or strong base means it is completely ionized in solution state. For e.g., NaOH (strong base) is neutralized by HCl (strong acid), due to their complete ionization, the net reaction takes place in only water formation.
So the enthalpy of neutralization is always constant for strong acid by a strong base.
\[\ce{H^+Cl^- + Na^+OH^- -> Na^+Cl^- + H2O}\]
\[\ce{H^+NO3^+ + K^+OH^- -> K^+NO3^+ + H2O}\]
(Net reaction) \[\ce{H^+ + OH^- -> H2O}\]
∆H = − 57.32 kJ
APPEARS IN
संबंधित प्रश्न
Obtain the relationship between ΔH and ΔU for gas phase reactions.
Calculate the amount of work done in the
1) Oxidation of 1 mole HCl(g) at 200 °C according to reaction.
4HCl(g) + O2(g) → 2Cl2(g) + 2H2O(g)
2) Decomposition of one mole of NO at 300 °C for the reaction
2NO(g) → N2(g) + O2(g)
Answer the following question.
When 6.0 g of O2 reacts with CIF as per
\[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\]
The enthalpy change is 38.55 kJ. What is the standard enthalpy of the reaction? (Δr H° = 205.6 kJ)
Calculate the work done and comment on whether work is done on or by the system for the decomposition of 2 moles of NH4NO3 at 100 °C
NH4NO3(s) → N2O(g) + 2H2O(g)
Write the expression showing the relation between enthalpy change and internal energy change for gaseous phase reaction.
The standard enthalpies of formation of SO2 and SO3 are −297 kJ mol−1 and −396 kJ mol−1 respectively. Calculate the standard enthalpy of reaction for the reaction: \[\ce{SO2 + 1/2O2 -> SO3}\]
When 6.0 g of O2 reacts with CIF as per \[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\] the enthalpy change is 38.55 kJ. The standard enthalpy of the reaction is ____________.
The enthalpy change for two reactions are given by the equations
\[\ce{2Cr_{(s)} + 1.5 O2_{(g)} -> Cr2O3_{(s)}}\];
∆H1 = −1130 kJ ............(i)
\[\ce{C_{(s)} + 0.5 O2_{(g)} -> CO_{(g)}}\];
∆H2 = −110 kJ .........(ii)
What is the enthalpy change, in kJ, for the following reaction?
\[\ce{3C_{(s)} + Cr2O3_{(s)} -> 2Cr_{(s)} + 3CO_{(g)}}\]
In which of the following reactions does the heat change represent the heat of formation of water?
Calculate ΔU if 2 kJ heat is released and 10 kJ of work is done on the system.