Advertisements
Advertisements
प्रश्न
Obtain the relationship between ΔH and ΔU for gas phase reactions.
उत्तर
i. At constant pressure, ΔH and ΔU are related as
ΔH = ΔU + PΔV ...(1)
ii. For reactions involving gases, ΔV cannot be neglected.
Therefore, ΔH = ΔU + PΔV
= ΔU + P(V2 – V1)
ΔH = ΔU + PV2 – PV1 ...(2)
where, V1 is the volume of gas-phase reactants and V2 that of the gaseous products.
iii. We assume reactant and product behave ideally. Applying an ideal gas equation, PV = nRT. Suppose that n1 moles of gaseous reactants produce n2 moles of gaseous products. Then,
PV1 = n1RT and PV2 = n2RT ...(3)
iv. Substitution of equation (3) into equation (2) yields
ΔH = ΔU + n2RT – n1RT
= ΔU + (n2 – n1) RT
= ΔU + Δng RT ...(4)
where, Δng is the difference between the number of moles of products and those of reactants.
APPEARS IN
संबंधित प्रश्न
Select the most appropriate option.
The enthalpy of formation for all elements in their standard states is _______.
Select the most appropriate option.
Bond enthalpies of H–H, Cl–Cl, and H–Cl bonds are 434 kJ mol–1, 242 kJ mol–1, and 431 kJ mol–1, respectively. Enthalpy of formation of HCl is _______.
Answer in brief.
Obtain the expression for work done in chemical reaction.
Answer the following question.
When 6.0 g of O2 reacts with CIF as per
\[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\]
The enthalpy change is 38.55 kJ. What is the standard enthalpy of the reaction? (Δr H° = 205.6 kJ)
Calculate the standard enthalpy of formation of \[\ce{CH3OH_{(l)}}\] from the following data:
\[\ce{CH3OH_{(l)} + 3/2 O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)} }\]; ΔrH° = − 726 kJ mol-1
\[\ce{C_{(graphite)} + O2_{(g)} -> CO2_{(g)}}\]; ΔcH° = −393 kJ mol−1
\[\ce{H2_{(g)} + 1/2 O_{(g)} -> H2O_{(l)}}\]; ΔfH° = −286 kJ mol−1
Write the mathematical relation between ΔH and ΔU during the formation of one mole of CO2 under standard conditions.
Write the expression showing the relation between enthalpy change and internal energy change for gaseous phase reaction.
An ideal gas expands from the volume of 1 × 10–3 m3 to 1 × 10–2 m3 at 300 K against a constant pressure at 1 × 105 Nm–2. The work done is
The work done by the liberated gas when 55.85 g of iron (molar mass 55.85 g mol–1) reacts with hydrochloric acid in an open beaker at 25°C
Enthalpy of neutralization is always a constant when a strong acid is neutralized by a strong base: account for the statement.
The standard enthalpies of formation of SO2 and SO3 are −297 kJ mol−1 and −396 kJ mol−1 respectively. Calculate the standard enthalpy of reaction for the reaction: \[\ce{SO2 + 1/2O2 -> SO3}\]
The standard enthalpy of formation of ammonia is −46.0 kJ mol−1. The enthalpy change for the reaction:
\[\ce{2NH3_{(g)} -> 2N2_{(g)} + 3H2_{(g)}}\] is ____________.
When 6.0 g of O2 reacts with CIF as per \[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\] the enthalpy change is 38.55 kJ. The standard enthalpy of the reaction is ____________.
Identify the equation in which change in enthalpy is equal to change in internal energy.
The enthalpy change for two reactions are given by the equations
\[\ce{2Cr_{(s)} + 1.5 O2_{(g)} -> Cr2O3_{(s)}}\];
∆H1 = −1130 kJ ............(i)
\[\ce{C_{(s)} + 0.5 O2_{(g)} -> CO_{(g)}}\];
∆H2 = −110 kJ .........(ii)
What is the enthalpy change, in kJ, for the following reaction?
\[\ce{3C_{(s)} + Cr2O3_{(s)} -> 2Cr_{(s)} + 3CO_{(g)}}\]
Given the bond energies N ≡ N, H – H and N – H bonds are 945, 436 and 391 kJ/mol respectively. The enthalpy of the reaction;
\[\ce{N2_{(g)} + 3H2_{(g)} -> 2NH3_{(g)}}\]
In which of the following reactions does the heat change represent the heat of formation of water?
In which of the following reactions, ∆H is greater than ∆U?
In which of the following reactions, ΔH is not equal to ΔU?
The work done during combustion of 9 × 10-2 kg of ethane, C2H6 (g) at 300 K is ______.
(Given R = 8.314 J deg-1, atomic mass C = 12, H = 1)
Calculate ΔU if 2 kJ heat is released and 10 kJ of work is done on the system.
Under what conditions ΔH = ΔU?
Calculate ΔS of the surrounding if the standard enthalpy of formation of methanol is − 238.9 kJ mol−1.
In a particular reaction, 2 kJ of heat is released by the system and 8 kJ of work is done on the system. Determine ΔU.