मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Select the most appropriate option. Bond enthalpies of H–H, Cl–Cl, and H–Cl bonds are 434 kJ mol–1, 242 kJ mol–1 and 431 kJ mol–1, respectively. Enthalpy of formation of HCl is _______. - Chemistry

Advertisements
Advertisements

प्रश्न

Select the most appropriate option.

Bond enthalpies of H–H, Cl–Cl, and H–Cl bonds are 434 kJ mol–1, 242 kJ mol–1, and 431 kJ mol–1, respectively. Enthalpy of formation of HCl is _______.

पर्याय

  • 245 kJ mol–1

  • –93 kJ mol–1

  • –245 kJ mol–1

  • 93 kJ mol–1

MCQ
रिकाम्या जागा भरा

उत्तर

Bond enthalpies of H–H, Cl–Cl, and H–Cl bonds are 434 kJ mol–1, 242 kJ mol–1, and 431 kJ mol–1, respectively. Enthalpy of formation of HCl is `bb(underline(–93  kJ  mol^(–1))`.

Explanation:

ΔrH° = ∑ ΔH° (reactant bonds) – ∑ΔH° (products bonds)

\[\ce{H2_{(g)} + Cl2_{(g)} → 2HCl_{(g)}}\] 

∴ ΔrH° = [1 mol × 434 kJ mol–1 + 1 mol × 242 kJ mol–1] – [2 mol × 431 kJ mol–1]

= –186 kJ

∴ \[\ce{H2_{(g)} + Cl2_{(g)} → 2HCl_{(g)}, ΔrH° = -186 kJ}\]

For enthalpy of formation of HCl, the reaction is

\[\ce{1/2 H2_{(g)} + 1/2 Cl2_{(g)} -> HCl_{(g)}}\],

ΔrH° =`(- 186  "kJ")/(2  "mol")`= –93 kJ mol–1

shaalaa.com
Enthalpy (H)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Chemical Thermodynamics - Exercises [पृष्ठ ८७]

APPEARS IN

बालभारती Chemistry [English] 12 Standard HSC
पाठ 4 Chemical Thermodynamics
Exercises | Q 1.1 | पृष्ठ ८७

संबंधित प्रश्‍न

Select the most appropriate option.

The enthalpy of formation for all elements in their standard states is _______.


Answer the following question.

Calculate standard enthalpy of reaction,

Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g), from the following data.

Δf H°(Fe2O3) = - 824 kJ/mol,

Δf H°(CO) = - 110 kJ/mol,

Δf H°(CO2) = - 393 kJ/mol


Answer the following question.

Calculate ΔU at 298 K for the reaction,

C2H4(g) + HCl(g) → C2H5Cl(g), ΔH = - 72.3 kJ

How much PV work is done?


Calculate the amount of work done in the

1) Oxidation of 1 mole HCl(g) at 200 °C according to reaction.

4HCl(g) + O2(g) → 2Cl2(g) + 2H2O(g)

2) Decomposition of one mole of NO at 300 °C for the reaction

2NO(g) → N2(g) + O2(g)


Calculate the standard enthalpy of formation of \[\ce{CH3OH_{(l)}}\] from the following data:

\[\ce{CH3OH_{(l)} + 3/2 O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)} }\]; ΔrH° = − 726 kJ mol-1 

\[\ce{C_{(graphite)} + O2_{(g)} -> CO2_{(g)}}\]; ΔcH° = −393 kJ mol−1

\[\ce{H2_{(g)} + 1/2 O_{(g)} -> H2O_{(l)}}\]; ΔfH° = −286 kJ mol−1


Calculate the work done and comment on whether work is done on or by the system for the decomposition of 2 moles of NH4NO3 at 100 °C
NH4NO3(s) → N2O(g) + 2H2O(g)


Write the mathematical relation between ΔH and ΔU during the formation of one mole of CO2 under standard conditions.


Write the expression showing the relation between enthalpy change and internal energy change for gaseous phase reaction.


An ideal gas expands from the volume of 1 × 10–3 m3 to 1 × 10–2 m3 at 300 K against a constant pressure at 1 × 105 Nm–2. The work done is


The work done by the liberated gas when 55.85 g of iron (molar mass 55.85 g mol–1) reacts with hydrochloric acid in an open beaker at 25°C


Enthalpy of neutralization is always a constant when a strong acid is neutralized by a strong base: account for the statement.


The standard enthalpies of formation of SO2 and SO3 are −297 kJ mol−1 and −396 kJ mol−1 respectively. Calculate the standard enthalpy of reaction for the reaction: \[\ce{SO2 + 1/2O2 -> SO3}\]


What is standard N ≡ N bond enthalpy from following reaction,

\[\ce{N2_{(g)} + 3H2_{(g)} -> 2NH3_{(g)}; \Delta H^0 = - 83 kJ}\]

\[\ce{ΔH^0_{(H-H)}}\] = 435 kJ; \[\ce{ΔH^0_{(N-H)}}\] = 389 kJ


The difference between heats of reaction at constant pressure and at constanl volume for the reaction

\[\ce{2C6H6_{(l)} + 15O2_{(g)} -> 12CO2_{(g)} + 6H2O_{(l)}}\] at 25°C in kJ


When 6.0 g of O2 reacts with CIF as per \[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\] the enthalpy change is 38.55 kJ. The standard enthalpy of the reaction is ____________.


Identify the equation in which change in enthalpy is equal to change in internal energy.


Given the bond energies N ≡ N, H – H and N – H bonds are 945, 436 and 391 kJ/mol respectively. The enthalpy of the reaction;

\[\ce{N2_{(g)} + 3H2_{(g)} -> 2NH3_{(g)}}\]


For the reaction, \[\ce{N_{2(g)} + 3H_{2(g)} -> 2NH_{3(g)}}\], ΔH is equal to ______.


In which of the following reactions, ΔH is not equal to ΔU?


What is the amount of work done when 0.5 mole of methane, CH4 (g), is subjected to combustion at 300 K? (Given, R = 8.314 JK-1mol-1)


The work done during combustion of 9 × 10-2 kg of ethane, C2H6 (g) at 300 K is ______.
(Given R = 8.314 J deg-1, atomic mass C = 12, H = 1)


Calculate ΔU if 2 kJ heat is released and 10 kJ of work is done on the system.


Calculate the work done during the combustion of 0.138 kg of ethanol, C2H5OH(l) at 300 K.
Given: R = 8.314 Jk−1 mol−1, molar mass of ethanol = 46 g mol−1.


Under what conditions ΔH = ΔU?


Calculate the work done in oxidation of so2(g) at 25°C if, \[\ce{2SO_{2(g)} + O2_{(g)} -> 2SO_{3(g)}}\], R = 8.314 J K−1 mol−1.


In a particular reaction, 2 kJ of heat is released by the system and 8 kJ of work is done on the system. Determine ΔU.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×