Advertisements
Advertisements
प्रश्न
Answer the following question.
Calculate ΔU at 298 K for the reaction,
C2H4(g) + HCl(g) → C2H5Cl(g), ΔH = - 72.3 kJ
How much PV work is done?
उत्तर
Given:
Enthalpy change = ΔH = –72.3 kJ
Temperature = T = 298 K
To find:
PV work done and internal energy change (ΔU)
Formulae:
1. W = - ΔngRT
2. ΔH = ΔU + ΔngRT
Calculations:
Δng = (moles of product gases) - (moles of reactant gases)
Δng = 1 – 2 = –1 mol
Using formula (i)
W = - ΔngRT
= - (- 1 mol) × 8.314 J K-1 mol-1 × 298 K
= 2477.57 J = 2.48 kJ
Now, using formula (ii) and rearranging,
ΔU = ΔH - Δ ngRT = ΔH + W = –72.3 kJ + 2.48 kJ = –69.8 kJ
∴ The PV work done is 2.48 kJ.
∴ The internal energy change (ΔU) is –69.8 kJ.
APPEARS IN
संबंधित प्रश्न
Select the most appropriate option.
The enthalpy of formation for all elements in their standard states is _______.
Select the most appropriate option.
If the standard enthalpy of formation of methanol is –238.9 kJ mol–1 then entropy change of the surroundings will be _______.
Select the most appropriate option.
Bond enthalpies of H–H, Cl–Cl, and H–Cl bonds are 434 kJ mol–1, 242 kJ mol–1, and 431 kJ mol–1, respectively. Enthalpy of formation of HCl is _______.
Answer in brief.
Obtain the expression for work done in chemical reaction.
Answer the following question.
When 6.0 g of O2 reacts with CIF as per
\[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\]
The enthalpy change is 38.55 kJ. What is the standard enthalpy of the reaction? (Δr H° = 205.6 kJ)
Calculate the work done and comment on whether work is done on or by the system for the decomposition of 2 moles of NH4NO3 at 100 °C
NH4NO3(s) → N2O(g) + 2H2O(g)
An ideal gas expands from the volume of 1 × 10–3 m3 to 1 × 10–2 m3 at 300 K against a constant pressure at 1 × 105 Nm–2. The work done is
The work done by the liberated gas when 55.85 g of iron (molar mass 55.85 g mol–1) reacts with hydrochloric acid in an open beaker at 25°C
Define enthalpy of combustion.
Define enthalpy of neutralization.
Derive the relation between ∆H and ∆U for an ideal gas. Explain each term involved in the equation.
Calculate the enthalpy change for the reaction \[\ce{Fe2O3 + 3CO -> 2Fe + 3CO2}\] from the following data.
\[\ce{2Fe + 3/2O2 -> Fe2O3}\]; ΔH = −741 kJ
\[\ce{C + 1/2O2 -> CO}\]; ΔH = −137 kJ
\[\ce{C + O2-> CO2}\]; ΔH = −394.5 kJ
The standard enthalpies of formation of SO2 and SO3 are −297 kJ mol−1 and −396 kJ mol−1 respectively. Calculate the standard enthalpy of reaction for the reaction: \[\ce{SO2 + 1/2O2 -> SO3}\]
The difference between heats of reaction at constant pressure and at constanl volume for the reaction
\[\ce{2C6H6_{(l)} + 15O2_{(g)} -> 12CO2_{(g)} + 6H2O_{(l)}}\] at 25°C in kJ
When 6.0 g of O2 reacts with CIF as per \[\ce{2ClF_{(g)} + O2_{(g)} -> Cl2O_{(g)} + OF2_{(g)}}\] the enthalpy change is 38.55 kJ. The standard enthalpy of the reaction is ____________.
Identify the equation in which change in enthalpy is equal to change in internal energy.
For the reaction, \[\ce{N_{2(g)} + 3H_{2(g)} -> 2NH_{3(g)}}\], ΔH is equal to ______.
In which of the following reactions, ΔH is not equal to ΔU?
The work done during combustion of 9 × 10-2 kg of ethane, C2H6 (g) at 300 K is ______.
(Given R = 8.314 J deg-1, atomic mass C = 12, H = 1)
Calculate the work done during the combustion of 0.138 kg of ethanol, C2H5OH(l) at 300 K.
Given: R = 8.314 Jk−1 mol−1, molar mass of ethanol = 46 g mol−1.
Calculate the work done in oxidation of so2(g) at 25°C if, \[\ce{2SO_{2(g)} + O2_{(g)} -> 2SO_{3(g)}}\], R = 8.314 J K−1 mol−1.
In a particular reaction, 2 kJ of heat is released by the system and 8 kJ of work is done on the system. Determine ΔU.
Calculate work done in oxidation of 4 moles of SO2 at 25°C. (Given: R = 8.314 JK−1 mol−1 ).
Define enthalpy.